增强 K-Cl 协同转运可恢复神经病理性疼痛模型中的正常脊髓丘脑感觉编码。
Enhancing K-Cl co-transport restores normal spinothalamic sensory coding in a neuropathic pain model.
机构信息
1 Division of Cellular and Molecular Neuroscience, Institut Universitaire en Santé Mentale de Québec, Québec, QC, G1J 2G3, Canada.
出版信息
Brain. 2014 Mar;137(Pt 3):724-38. doi: 10.1093/brain/awt334. Epub 2013 Dec 24.
Neuropathic pain is a widespread and highly debilitating condition commonly resulting from injury to the nervous system, one main sequela of which is tactile allodynia, a pain induced by innocuous mechanical stimulation of the skin. Yet, the cellular mechanisms and neuronal substrates underlying this pathology have remained elusive. We studied this by quantifying and manipulating behavioural and neuronal nociceptive thresholds in normal and pathological pain conditions. We found that, in both control rats and those with pain hypersensitivity induced by nerve injury, the nociceptive paw withdrawal threshold matches the response threshold of nociceptive-specific deep spinothalamic tract neurons. In contrast, wide dynamic range or multimodal spinothalamic tract neurons showed no such correlation nor any change in properties after nerve injury. Disrupting Cl(-) homeostasis by blocking K(+)-Cl(-) co-transporter 2 replicated the decrease in threshold of nociceptive-specific spinothalamic tract neurons without affecting wide dynamic range spinothalamic tract cells. Accordingly, only combined blockade of both GABAA- and glycine-gated Cl(-) channels replicated the effects of nerve injury or K(+)-Cl(-) co-transporter 2 blockade to their full extent. Conversely, rescuing K(+)-Cl(-) co-transporter 2 function restored the threshold of nociceptive-specific spinothalamic tract neurons to normal values in animals with nerve injury. Thus, we unveil a tight association between tactile allodynia and abnormal sensory coding within the normally nociceptive-specific spinothalamic tract. Thus allodynia appears to result from a switch in modality specificity within normally nociceptive-specific spinal relay neurons rather than a change in gain within a multimodal ascending tract. Our findings identify a neuronal substrate and a novel cellular mechanism as targets for the treatment of pathological pain.
神经性疼痛是一种广泛存在且高度致残的疾病,通常由神经系统损伤引起,其主要后遗症之一是触觉超敏,即无害的机械刺激皮肤会引发疼痛。然而,这种病理的细胞机制和神经元基质仍然难以捉摸。我们通过量化和操纵正常和病理疼痛条件下的行为和神经元痛觉阈值来研究这一点。我们发现,在正常大鼠和因神经损伤而产生疼痛敏感性增加的大鼠中,伤害性爪回缩阈值与伤害性特异性深脊髓丘脑束神经元的反应阈值相匹配。相比之下,宽动态范围或多模态脊髓丘脑束神经元没有这种相关性,也没有在神经损伤后改变其性质。通过阻断 K(+)-Cl(-)共转运蛋白 2 来破坏 Cl(-)稳态,复制了伤害性特异性脊髓丘脑束神经元阈值的降低,而不会影响宽动态范围脊髓丘脑束细胞。因此,只有同时阻断 GABA A 和甘氨酸门控 Cl(-)通道才能完全复制神经损伤或 K(+)-Cl(-)共转运蛋白 2 阻断的作用。相反,恢复 K(+)-Cl(-)共转运蛋白 2 的功能可使神经损伤动物伤害性特异性脊髓丘脑束神经元的阈值恢复正常。因此,我们揭示了触觉超敏与正常伤害性特异性脊髓丘脑束内异常感觉编码之间的紧密联系。因此,超敏似乎是由于正常伤害性特异性脊髓中继神经元的模态特异性发生转换,而不是多模态上行束内的增益发生变化。我们的发现确定了一个神经元基质和一个新的细胞机制作为病理性疼痛治疗的靶点。