Suppr超能文献

使用逐步方法提高蛋白质设计的计算效率和可处理性。一种用于并行和分布式蛋白质设计的策略。

Improving computational efficiency and tractability of protein design using a piecemeal approach. A strategy for parallel and distributed protein design.

作者信息

Pitman Derek J, Schenkelberg Christian D, Huang Yao-Ming, Teets Frank D, DiTursi Daniel, Bystroff Christopher

机构信息

Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, Department of Computer Science and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, Department of Computer Science and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, Department of Computer Science and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Bioinformatics. 2014 Apr 15;30(8):1138-1145. doi: 10.1093/bioinformatics/btt735. Epub 2013 Dec 25.

Abstract

MOTIVATION

Accuracy in protein design requires a fine-grained rotamer search, multiple backbone conformations, and a detailed energy function, creating a burden in runtime and memory requirements. A design task may be split into manageable pieces in both three-dimensional space and in the rotamer search space to produce small, fast jobs that are easily distributed. However, these jobs must overlap, presenting a problem in resolving conflicting solutions in the overlap regions.

RESULTS

Piecemeal design, in which the design space is split into overlapping regions and rotamer search spaces, accelerates the design process whether jobs are run in series or in parallel. Large jobs that cannot fit in memory were made possible by splitting. Accepting the consensus amino acid selection in conflict regions led to non-optimal choices. Instead, conflicts were resolved using a second pass, in which the split regions were re-combined and designed as one, producing results that were closer to optimal with a minimal increase in runtime over the consensus strategy. Splitting the search space at the rotamer level instead of at the amino acid level further improved the efficiency by reducing the search space in the second pass.

AVAILABILITY AND IMPLEMENTATION

Programs for splitting protein design expressions are available at www.bioinfo.rpi.edu/tools/piecemeal.html CONTACT: bystrc@rpi.edu Supplementary information: Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质设计的准确性需要精细的旋转异构体搜索、多种主链构象以及详细的能量函数,这在运行时和内存需求方面造成了负担。一个设计任务可以在三维空间和旋转异构体搜索空间中分解为可管理的部分,以产生易于分发的小而快速的任务。然而,这些任务必须重叠,这在解决重叠区域中相互冲突的解决方案时带来了问题。

结果

零碎设计,即将设计空间划分为重叠区域和旋转异构体搜索空间,无论任务是串行运行还是并行运行,都能加速设计过程。通过拆分使得无法装入内存的大型任务成为可能。接受冲突区域中的一致氨基酸选择会导致非最优选择。相反,通过第二轮处理来解决冲突,在第二轮处理中,将拆分的区域重新组合并作为一个整体进行设计,在运行时比一致策略略有增加的情况下产生更接近最优的结果。在旋转异构体级别而非氨基酸级别拆分搜索空间,通过减少第二轮处理中的搜索空间进一步提高了效率。

可用性和实现方式

用于拆分蛋白质设计表达式的程序可在www.bioinfo.rpi.edu/tools/piecemeal.html获取。联系方式:bystrc@rpi.edu。补充信息:补充数据可在《生物信息学》在线获取。

相似文献

2
Protein design using continuous rotamers.使用连续旋转异构体进行蛋白质设计。
PLoS Comput Biol. 2012 Jan;8(1):e1002335. doi: 10.1371/journal.pcbi.1002335. Epub 2012 Jan 12.
4
Parallel Computational Protein Design.并行计算蛋白质设计
Methods Mol Biol. 2017;1529:265-277. doi: 10.1007/978-1-4939-6637-0_13.
10
Rotamer Libraries for the High-Resolution Design of β-Amino Acid Foldamers.β-氨基酸寡聚物的高分辨率设计的构象文库。
Structure. 2017 Nov 7;25(11):1771-1780.e3. doi: 10.1016/j.str.2017.09.005. Epub 2017 Oct 12.

本文引用的文献

1
Expanded explorations into the optimization of an energy function for protein design.对蛋白质设计能量函数优化的拓展探索。
IEEE/ACM Trans Comput Biol Bioinform. 2013 Sep-Oct;10(5):1176-87. doi: 10.1109/TCBB.2013.113.
7
Theoretical and computational protein design.理论与计算蛋白质设计
Annu Rev Phys Chem. 2011;62:129-49. doi: 10.1146/annurev-physchem-032210-103509.
8
Engineering a protein-protein interface using a computationally designed library.利用计算设计文库工程化蛋白质-蛋白质界面。
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19296-301. doi: 10.1073/pnas.1006528107. Epub 2010 Oct 25.
9
Inverse folding of RNA pseudoknot structures.RNA假结结构的反向折叠
Algorithms Mol Biol. 2010 Jun 23;5:27. doi: 10.1186/1748-7188-5-27.
10
Backbone flexibility in computational protein design.计算蛋白质设计中的骨架灵活性。
Curr Opin Biotechnol. 2009 Aug;20(4):420-8. doi: 10.1016/j.copbio.2009.07.006. Epub 2009 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验