Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.
Mol Cell. 2011 Apr 22;42(2):250-60. doi: 10.1016/j.molcel.2011.03.010. Epub 2011 Mar 31.
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.
从头设计蛋白质-蛋白质界面是对我们理解蛋白质-蛋白质相互作用原理的严格检验,并且能够为生物和医学挑战提供独特的方法。在这里,我们描述了一种基于基序的方法,用于计算设计具有天然样界面组成和相互作用密度的蛋白质-蛋白质复合物。使用这种方法,我们设计了一对蛋白质 Prb 和 Pdar,它们以 130 nM 的 KD 异二聚化,比任何以前设计的从头开始的蛋白质-蛋白质复合物紧密 1000 倍。定向进化鉴定出两个提高亲和力至 180 pM 的点突变。亲和力成熟复合物的晶体结构显示结合完全通过设计的界面残基。令人惊讶的是,在体外进化的复合物中,一个伴侣相对于原始设计模型旋转了 180°,但仍保持中央计算设计的热点相互作用,并保留许多外围相互作用的特征。这项工作表明,通过在两个不相互作用的伴侣上设计互补的相互作用表面,可以创建高亲和力的蛋白质界面,并强调了仍然存在的挑战。