Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, A,C, Meyers Vænge 15, DK-2450, Copenhagen, Denmark.
BMC Genomics. 2013 Dec 28;14:928. doi: 10.1186/1471-2164-14-928.
The fungus gardens of leaf-cutting ants are natural biomass conversion systems that turn fresh plant forage into fungal biomass to feed the farming ants. However, the decomposition potential of the symbiont Leucocoprinus gongylophorus for processing polysaccharides has remained controversial. We therefore used quantifiable DeepSAGE technology to obtain mRNA expression patterns of genes coding for secreted enzymes from top, middle, and bottom sections of a laboratory fungus-garden of Acromyrmex echinatior leaf-cutting ants.
A broad spectrum of biomass-conversion-relevant enzyme genes was found to be expressed in situ: cellulases (GH3, GH5, GH6, GH7, AA9 [formerly GH61]), hemicellulases (GH5, GH10, CE1, GH12, GH74), pectinolytic enzymes (CE8, GH28, GH43, PL1, PL3, PL4), glucoamylase (GH15), α-galactosidase (GH27), and various cutinases, esterases, and lipases. In general, expression of these genes reached maximal values in the bottom section of the garden, particularly for an AA9 lytic polysaccharide monooxygenase and for a GH5 (endocellulase), a GH7 (reducing end-acting cellobiohydrolase), and a GH10 (xylanase), all containing a carbohydrate binding module that specifically binds cellulose (CBM1). Although we did not directly quantify enzyme abundance, the profile of expressed cellulase genes indicates that both hydrolytic and oxidative degradation is taking place.
The fungal symbiont of Acromyrmex leaf-cutting ants can degrade a large range of plant polymers, but the conversion of cellulose, hemicellulose, and part of the pectin occurs primarily towards the end of the decomposition process, i.e. in the bottom section of the fungus garden. These conversions are likely to provide nutrients for the fungus itself rather than for the ants, whose colony growth and reproductive success are limited by proteins obtained from ingesting fungal gongylidia. These specialized hyphal tips are hardly produced in the bottom section of fungus gardens, consistent with the ants discarding old fungal biomass from this part of the garden. The transcripts that we found suggest that actively growing mycelium in the bottom of gardens helps to maintain an optimal water balance to avoid hyphal disintegration, so the ants can ultimately discard healthy rather than decaying and diseased garden material, and to buffer negative effects of varying availability and quality of substrate across the seasons.
切叶蚁的真菌园是天然的生物质转化系统,它将新鲜的植物饲料转化为真菌生物质,以喂养养殖蚂蚁。然而,共生菌 Leucocoprinus gongylophorus 处理多糖的分解潜力一直存在争议。因此,我们使用可量化的 DeepSAGE 技术,从 Acromyrmex echinatior 切叶蚁实验室真菌园的顶部、中部和底部获得编码分泌酶的基因的 mRNA 表达模式。
发现广泛的与生物质转化相关的酶基因在原位表达:纤维素酶(GH3、GH5、GH6、GH7、AA9[以前的 GH61])、半纤维素酶(GH5、GH10、CE1、GH12、GH74)、果胶酶(CE8、GH28、GH43、PL1、PL3、PL4)、糖化酶(GH15)、α-半乳糖苷酶(GH27)和各种角质酶、酯酶和脂肪酶。一般来说,这些基因的表达在花园的底部达到最大值,特别是对于 AA9 溶菌多糖单加氧酶和 GH5(内切纤维素酶)、GH7(还原末端作用的纤维二糖水解酶)和 GH10(木聚糖酶),它们都含有一个专门结合纤维素的碳水化合物结合模块(CBM1)。尽管我们没有直接量化酶的丰度,但表达的纤维素酶基因谱表明,既有水解又有氧化降解。
切叶蚁的真菌共生体可以降解大量的植物聚合物,但纤维素、半纤维素和部分果胶的转化主要发生在分解过程的末端,即在真菌园的底部。这些转化可能为真菌本身提供养分,而不是为蚂蚁提供养分,蚂蚁的种群生长和繁殖成功受到从真菌 gongylidia 中摄取的蛋白质的限制。这些专门的菌丝尖端在真菌园的底部几乎不产生,这与蚂蚁从花园的这一部分丢弃旧的真菌生物质一致。我们发现的转录本表明,活跃生长的菌丝在花园底部有助于维持最佳的水分平衡,以避免菌丝解体,因此蚂蚁最终可以丢弃健康的而不是腐烂和患病的花园材料,并缓冲基质在季节间的可用性和质量变化的负面影响。