Ojeda-Martinez Dairon, Diaz Isabel, Santamaria M Estrella, Ortego Félix
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
Comput Struct Biotechnol J. 2024 Oct 18;23:3744-3758. doi: 10.1016/j.csbj.2024.10.027. eCollection 2024 Dec.
Arthropods represent the largest and most diverse phylum on Earth, playing a pivotal role in the biosphere. One key to their evolutionary success is their ability to feed on plant material. However, their endogenous enzymatic repertoire, which contributes to plant digestion, remains largely unexplored and poorly understood.
We analyzed 815 arthropod proteomes and identified a total of 268,171 carbohydrate-active modules. Our findings revealed a strong correlation between enzymatic content and feeding habits, with herbivorous species possessing significantly higher enzyme levels. We identified widespread carbohydrate-active families across the AA, CBM, GH, and GT classes, and observed a progressive increase in taxa-exclusive families in more recent arthropod lineages. Notably, we highlighted the impact of the transition from ametabolous to holometabolous development on carbohydrate metabolism, as well as the ecological adaptations of different species groups. By reconstructing the ancestral enzymatic profiles of arthropods, we identified significant fluctuations in 10 carbohydrate-active families over time.
Our analysis advances the understanding of the evolutionary mechanisms utilized by the megadiverse phylum Arthropoda. We emphasize the critical role of herbivory as a selective force shaping enzymatic strategies, particularly those involved in carbohydrate metabolism. The distribution and exclusivity of carbohydrate-active families across different arthropod groups provide insights into their evolutionary trajectories and offer a clearer picture of the metabolic pathways that led their ancestors to their present forms.
节肢动物是地球上最大且最多样化的动物门,在生物圈中起着关键作用。它们进化成功的一个关键在于以植物材料为食的能力。然而,它们有助于植物消化的内源性酶库在很大程度上仍未被探索且了解甚少。
我们分析了815个节肢动物蛋白质组,共鉴定出268,171个碳水化合物活性模块。我们的研究结果揭示了酶含量与取食习性之间存在强相关性,草食性物种的酶水平显著更高。我们在AA、CBM、GH和GT类别中鉴定出广泛存在的碳水化合物活性家族,并观察到在较新的节肢动物谱系中,类群专属家族有逐渐增加的趋势。值得注意的是,我们强调了从无变态发育到全变态发育的转变对碳水化合物代谢的影响,以及不同物种组的生态适应性。通过重建节肢动物的祖先酶谱,我们确定了10个碳水化合物活性家族随时间的显著波动。
我们的分析推进了对节肢动物这个超级多样化动物门所利用的进化机制的理解。我们强调草食性作为塑造酶策略(特别是那些参与碳水化合物代谢的策略)的选择力量的关键作用。碳水化合物活性家族在不同节肢动物群体中的分布和独特性为它们的进化轨迹提供了见解,并更清晰地展现了导致其祖先形成当前形态的代谢途径。