Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Université Henri Poincaré, Interactions Arbres/Micro-organismes, 54280 Champenoux, France.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17501-6. doi: 10.1073/pnas.1206847109. Epub 2012 Oct 8.
Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.
双孢蘑菇是适应、存活和在富含腐殖质的叶凋落物环境中生长的模式真菌。除了其生态作用外,双孢蘑菇已经成为人类饮食的重要组成部分超过 200 年,全球范围内“纽扣蘑菇”的栽培形成了价值数十亿美元的产业。我们展示了两个双孢蘑菇基因组、它们在堆肥和蘑菇形成过程中的基因库和转录谱。基因组编码了一套类似于木质素分解者的完整多糖降解酶。在定义培养基、菌床土壤和堆肥上生长的菌丝体的比较转录组学表明,编码参与木聚糖、纤维素、果胶和蛋白质降解的酶的基因在堆肥中表达更高。血红素硫醇过氧化物酶和β-醚酶的惊人扩张与 Agaricomycotina 木质素分解者不同,表明对富含腐殖质环境中发现的腐烂木质素和相关代谢物的广泛攻击。同样,这些基因的上调以及木质素降解锰过氧化物酶、多种铜自由基氧化酶和细胞色素 P450s 的上调与复杂的富含腐殖质底物所带来的挑战一致。双孢蘑菇中水解酶的基因库和表达与分类上相关的外生菌根共生菌 Laccaria bicolor 有很大的不同。在富含腐殖质的底物中高度表达的基因中也鉴定出了一个常见的启动子基序。这些观察结果揭示了遗传和酶促机制,这些机制控制着对植物降解过程中形成的富含腐殖质生态位的适应,进一步定义了这些真菌对陆地生态系统土壤结构和碳固存的关键作用。基因组序列将加快蘑菇的培育,以提高农业特性。