Suppr超能文献

基于结构的热球菌 Argonaute DNA 引导链介导的 DNA 靶标切割的裂解机制。

Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage.

机构信息

Laboratory of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):652-7. doi: 10.1073/pnas.1321032111. Epub 2013 Dec 27.

Abstract

We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5'-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg(2+) cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand.

摘要

我们报告了嗜热栖热菌 Argonaute(TtAgo)与 5'-磷酸化引导 DNA 和一系列 DNA 靶标的三元复合物的晶体结构。这些在改进的分辨率下(高达 2.2 Å)解决的非切割兼容、切割兼容和切割后状态的三元复合物结构,为催化残基、一对 Mg(2+)阳离子和假定的亲核水分子的协调定位提供了分子见解,这些对于 TtAgo 介导的通过 RNase H 型机制的靶标切割是必需的。此外,这些三元复合物结构还深入了解了蛋白质和 DNA 构象变化,这些变化有助于在非切割兼容和切割兼容状态之间进行转换,包括 Glu 指在产生切割有效的催化 Asp-Glu-Asp-Asp 四联体中的作用。切割后,种子片段与靶链互补片段形成稳定的双链。

相似文献

1
Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):652-7. doi: 10.1073/pnas.1321032111. Epub 2013 Dec 27.
2
Two symmetric arginine residues play distinct roles in Argonaute DNA guide strand-mediated DNA target cleavage.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):845-853. doi: 10.1073/pnas.1817041116. Epub 2018 Dec 27.
4
Gene Silencing Mechanisms Revealed by Dynamics of Guide, Target, and Duplex Binding to Argonaute.
J Chem Theory Comput. 2020 Jan 14;16(1):688-699. doi: 10.1021/acs.jctc.9b00546. Epub 2019 Dec 10.
5
Autonomous Generation and Loading of DNA Guides by Bacterial Argonaute.
Mol Cell. 2017 Mar 16;65(6):985-998.e6. doi: 10.1016/j.molcel.2017.01.033. Epub 2017 Mar 2.
6
Dynamic anchoring of the 3'-end of the guide strand controls the target dissociation of Argonaute-guide complex.
J Am Chem Soc. 2013 Nov 13;135(45):16865-71. doi: 10.1021/ja403138d. Epub 2013 Oct 31.
8
Argonaute Facilitates the Lateral Diffusion of the Guide along Its Target and Prevents the Guide from Being Pushed Away by the Ribosome.
Biochemistry. 2018 Apr 17;57(15):2179-2183. doi: 10.1021/acs.biochem.8b00213. Epub 2018 Apr 6.
10
Thermus thermophilus Argonaute Functions in the Completion of DNA Replication.
Cell. 2020 Sep 17;182(6):1545-1559.e18. doi: 10.1016/j.cell.2020.07.036. Epub 2020 Aug 25.

引用本文的文献

1
A conserved PIWI silencing complex detects piRNA-target engagement.
Mol Cell. 2025 Sep 4;85(17):3275-3287.e7. doi: 10.1016/j.molcel.2025.08.010.
2
Random guide-independent DNA cleavage from the Argonaute of Exiguobacterium sp. AB2.
BMC Microbiol. 2025 Jul 19;25(1):444. doi: 10.1186/s12866-025-04159-1.
5
A unifying model for microRNA-guided silencing of messenger RNAs.
Res Sq. 2025 Apr 22:rs.3.rs-6422368. doi: 10.21203/rs.3.rs-6422368/v1.
6
Cyanobacterial Argonautes and Cas4 family nucleases cooperate to interfere with invading DNA.
Mol Cell. 2025 May 15;85(10):1920-1937.e10. doi: 10.1016/j.molcel.2025.03.025. Epub 2025 Apr 26.
7
Mechanistic insights into RNA cleavage by human Argonaute2-siRNA complex.
Cell Res. 2025 Apr 16. doi: 10.1038/s41422-025-01114-7.
8
A unifying model for microRNA-guided silencing of messenger RNAs.
bioRxiv. 2025 Mar 17:2025.03.16.643529. doi: 10.1101/2025.03.16.643529.
9
Target DNA-induced filament formation and nuclease activation of SPARDA complex.
Cell Res. 2025 Mar 24. doi: 10.1038/s41422-025-01100-z.
10
Comment on: "Atom-Modified gDNA Enhances Cleavage Activity of TtAgo Enabling Ultrasensitive Nucleic Acid Testing".
Adv Sci (Weinh). 2025 Apr;12(13):e2406872. doi: 10.1002/advs.202406872. Epub 2025 Mar 8.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
DNA-guided DNA interference by a prokaryotic Argonaute.
Nature. 2014 Mar 13;507(7491):258-261. doi: 10.1038/nature12971. Epub 2014 Feb 16.
3
Bacterial argonaute samples the transcriptome to identify foreign DNA.
Mol Cell. 2013 Sep 12;51(5):594-605. doi: 10.1016/j.molcel.2013.08.014.
4
Structure of yeast Argonaute with guide RNA.
Nature. 2012 Jun 20;486(7403):368-74. doi: 10.1038/nature11211.
5
The structure of human argonaute-2 in complex with miR-20a.
Cell. 2012 Jul 6;150(1):100-10. doi: 10.1016/j.cell.2012.05.017. Epub 2012 Jun 7.
6
The crystal structure of human Argonaute2.
Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.
7
Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2.
Nature. 2010 Jun 10;465(7299):818-22. doi: 10.1038/nature09039. Epub 2010 May 26.
8
Making RISC.
Trends Biochem Sci. 2010 Jul;35(7):368-76. doi: 10.1016/j.tibs.2010.03.009. Epub 2010 Apr 13.
9
How to slice: snapshots of Argonaute in action.
Silence. 2010 Jan 12;1(1):3. doi: 10.1186/1758-907X-1-3.
10
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验