Pergal Marija V, Nestorov Jelena, Tovilović Gordana, Ostojić Sanja, Gođevac Dejan, Vasiljević-Radović Dana, Djonlagić Jasna
Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, 11000, Serbia.
J Biomed Mater Res A. 2014 Nov;102(11):3951-64. doi: 10.1002/jbm.a.35071. Epub 2013 Dec 31.
Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on α,ω-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by (1) H NMR, quantitative (13) C NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protein adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.
研究了一系列基于α,ω-二羟基乙氧基丙基聚二甲基硅氧烷(PDMS)的热塑性聚(聚氨酯-硅氧烷)(TPUSs)在潜在生物医学应用中的性能和生物相容性。通过(1)H NMR、定量(13)C NMR、傅里叶变换红外光谱(FTIR)、原子力显微镜(AFM)、差示扫描量热法(DSC)、动态力学分析(DMA)、接触角和吸水率测量对具有不同PDMS软段含量的TPUSs薄膜进行了表征。不同技术(FTIR、AFM和DMA)表明,PDMS含量的降低促进了TPUSs中的微相分离。具有较高PDMS含量的样品具有更疏水的表面和更好的防水性能,但结晶度较低。在内皮细胞附着于未处理的共聚物表面或用多组分蛋白质混合物预处理的表面后,通过竞争性蛋白质吸附试验检测了TPUSs的生物相容性。通过乳酸脱氢酶和3-[4,5-二甲基噻唑-2-基]-2,5-二苯基溴化四氮唑试验测定,TPUSs对内皮细胞未表现出任何细胞毒性。未处理和预吸附蛋白质的TPUS样品有利于内皮细胞的粘附和生长,表明具有良好的生物相容性。在竞争性蛋白质吸附实验中,所有TPUSs吸附的白蛋白都比纤维蛋白原多,这一特征被认为有利于生物相容性。结果表明,TPUSs具有良好的表面、热机械和生物相容性能,通过适当选择共聚物的软/硬段比例,可以根据生物医学应用要求进行定制。