Suppr超能文献

由蒽醌发色团作为扩链剂驱动的超可拉伸彩色聚氨酯。

Super stretchable chromatic polyurethane driven by anthraquinone chromogen as a chain extender.

作者信息

Zhao Caiyun, Wang Chaoxia, Wang Youjiang, Yao Donggang

机构信息

Key Laboratory of Eco-Textile, Ministry of Education, School of Textile & Clothing, Jiangnan University Wuxi 214122 People's Republic of China

School of Materials Science & Engineering, Georgia Institute of Technology Atlanta GA 30332-0295 USA.

出版信息

RSC Adv. 2019 Jan 18;9(5):2332-2342. doi: 10.1039/c8ra06744a.

Abstract

A novel polyurethane elastomer (PUE) that exhibited high tensile strength, large elongation at break, great color strength and supreme color fastness was successfully designed and synthesized. The PUEs were prepared with isophorone diisocyanate (IPDI) as hard segments, polycarbonate diol (PCDL)/polytetrahydrofuran glycol (PTHF) as mixed soft segments, and anthraquinone chromogen as the chain extender agent. The relationships between the mechanical properties/color performance and chromogen addition content were investigated. The chromogen actual access rate of the obtained BPUEs was evaluated by UV-Vis. The clear tortuous surface and entanglements were exhibited in PUEs micromorphology structure, indicating a significant reinforcement of mechanical properties. Elongation-at-break and tensile strength reached the maximum value 2394% at 1% (BPUE) and 18.29 MPa at 5% (BPUE), respectively, and then decreased as chromogen addition content increased. Mechanical testing results correlate well with XRD and SEM findings, which proved that anthraquinone chromogen induced an improvement in phase separation. Furthermore, BPUE films displayed high color strength and excellent color fastnesses. The rubbing fastness and washing fastness of BPUE and BPUE reached grade 5, respectively. These inspiring findings suggest that PUE films with superb performance have potential to be directly applied in the textile field.

摘要

成功设计并合成了一种具有高拉伸强度、大断裂伸长率、高色强度和极佳色牢度的新型聚氨酯弹性体(PUE)。以异佛尔酮二异氰酸酯(IPDI)为硬段,聚碳酸酯二醇(PCDL)/聚四氢呋喃二醇(PTHF)为混合软段,蒽醌发色团为扩链剂制备了PUE。研究了机械性能/颜色性能与发色团添加量之间的关系。通过紫外-可见光谱对所得BPUE的发色团实际接入率进行了评估。PUE微观形态结构呈现出清晰的曲折表面和缠结,表明机械性能有显著增强。断裂伸长率和拉伸强度分别在1%(BPUE)时达到最大值2394%,在5%(BPUE)时达到18.29MPa,然后随着发色团添加量的增加而降低。力学测试结果与XRD和SEM结果良好相关,证明蒽醌发色团促进了相分离。此外,BPUE薄膜表现出高色强度和优异的色牢度。BPUE的摩擦色牢度和水洗色牢度分别达到5级。这些令人鼓舞的发现表明,具有优异性能的PUE薄膜有潜力直接应用于纺织领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4067/9059979/d5b8ed67fb8b/c8ra06744a-s1.jpg

相似文献

2
Synthesis and application of a cationic waterborne polyurethane fixative using quaternary ammonium diol as a chain extender.
RSC Adv. 2018 Dec 18;8(73):42041-42048. doi: 10.1039/c8ra09123d. eCollection 2018 Dec 12.
5
Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions.
Int J Biol Macromol. 2021 Aug 1;184:1-8. doi: 10.1016/j.ijbiomac.2021.06.038. Epub 2021 Jun 9.
7
Stiff Self-Healing Coating Based on UV-Curable Polyurethane with a "Hard Core, Flexible Arm" Structure.
ACS Omega. 2018 Sep 14;3(9):11128-11135. doi: 10.1021/acsomega.8b00925. eCollection 2018 Sep 30.
9
Synthesis and Properties of Cationic Core-Shell Fluorinated Polyurethane Acrylate.
Polymers (Basel). 2023 Dec 27;16(1):86. doi: 10.3390/polym16010086.

引用本文的文献

1
Preparation and Properties of Rosin-based Anthraquinone Fluorescent Waterborne Polyurethane.
J Fluoresc. 2025 Jul;35(7):5093-5103. doi: 10.1007/s10895-024-03900-9. Epub 2024 Aug 17.
2
A Study on the Preparation and Cavitation Erosion Mechanism of Polyether Polyurethane Coating.
Materials (Basel). 2022 Nov 18;15(22):8204. doi: 10.3390/ma15228204.

本文引用的文献

1
Preparation and characterization of polyurethane-carbon nanotube composites.
Soft Matter. 2005 Oct 21;1(5):386-394. doi: 10.1039/b509038e.
2
Synthesis and characterization of waterborne polyurethane containing poly(3-hydroxybutyrate) as new biodegradable elastomers.
J Mater Chem B. 2015 Dec 21;3(47):9089-9097. doi: 10.1039/c5tb01773d. Epub 2015 Nov 16.
3
A high water-content and high elastic dual-responsive polyurethane hydrogel for drug delivery.
J Mater Chem B. 2015 Nov 14;3(42):8401-8409. doi: 10.1039/c5tb01702e. Epub 2015 Sep 25.
4
The role of fast and slow processes in the formation of structure and properties of thermoplastic polyurethanes.
Phys Chem Chem Phys. 2016 Nov 23;18(46):31769-31776. doi: 10.1039/c6cp05895g.
5
Superior Performance of Polyurethane Based on Natural Melanin Nanoparticles.
Biomacromolecules. 2016 Nov 14;17(11):3782-3789. doi: 10.1021/acs.biomac.6b01298. Epub 2016 Oct 25.
6
Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly.
Chem Mater. 2015;27(16):5668-5677. doi: 10.1021/acs.chemmater.5b02086.
7
Biobased polyurethanes prepared from different vegetable oils.
ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1226-33. doi: 10.1021/am5071333. Epub 2015 Jan 8.
8
Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): assessment of biocompatibility.
J Biomed Mater Res A. 2014 Nov;102(11):3951-64. doi: 10.1002/jbm.a.35071. Epub 2013 Dec 31.
9
Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders.
Acta Biomater. 2005 Jul;1(4):471-84. doi: 10.1016/j.actbio.2005.02.007. Epub 2005 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验