Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637 (USA).
Chembiochem. 2014 Jan 24;15(2):223-7. doi: 10.1002/cbic.201300661. Epub 2013 Dec 20.
Strain-promoted azide-alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p-azido-L-phenylalanine (Az) residue and catalytically active bicyclononyne-substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor-based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both Si-H and olefin insertion reactions involving these carbene precursors.
应变促进的叠氮-炔环加成(SPAAC)可用于从含有 p-叠氮基-L-苯丙氨酸(Az)残基和催化活性双环壬炔取代金属配合物的支架蛋白中生成人工金属酶(ArMs)。该反应的高效率允许在存在半胱氨酸残基或细胞裂解物的各种反应性成分的情况下,在支架蛋白内的 Az 残基存在下快速形成 ArM。一般来说,基于辅因子的 ArM 形成允许使用任何所需的金属配合物来构建独特的无机蛋白质材料。SPAAC 共价键进一步将支架的固有功能与安装过程解耦,因为它不受天然氨基酸残基的影响;只要可以掺入一个 Az 残基,就可以生成一个 ArM。我们已经证明了该方法在支架和辅因子成分方面的范围,并确定生成的二钌 ArMs 可以催化重氮化合物的分解以及涉及这些卡宾前体的 Si-H 和烯烃插入反应。