Suppr超能文献

泌尿生殖系统沙眼衣原体质粒缺陷型、CT135缺失型及双缺陷型菌株对雌性小鼠的感染性。

Infectivity of urogenital Chlamydia trachomatis plasmid-deficient, CT135-null, and double-deficient strains in female mice.

作者信息

Sturdevant Gail L, Zhou Bing, Carlson John H, Whitmire William M, Song Lihua, Caldwell Harlan D

机构信息

Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

出版信息

Pathog Dis. 2014 Jun;71(1):90-2. doi: 10.1111/2049-632X.12121. Epub 2014 Jan 13.

Abstract

Chlamydia trachomatis is the most common cause of human bacterial sexually transmitted infections and is the world's leading cause of infectious preventable blindness. The chlamydial 7.5-kb plasmid and chromosomal gene CT135 have been shown to be important virulence factors in both nonhuman primate and mouse infection models. Chlamydia trachomatis plasmid-deficient urogenital isolates and a predicted CT135 null mutant have been evaluated independently in the female mouse genital tract model and both have been shown to reduce infectivity and virulence. However, these attenuating phenotypes have not been evaluated collectively in the murine model. Here, we test the infectivity of C. trachomatis serovar D strains in the mouse model that are plasmid-deficient, CT135 disrupted, or possess a combination of these attenuating genotypes. We find that the presence of the plasmid results in infections with higher infectious burdens, whereas CT135 facilitates a more protracted or chronic infection. Not unexpectedly, a combination of these genetic deficiencies resulted in a strain with enhanced infection attenuation characteristics.

摘要

沙眼衣原体是人类细菌性性传播感染的最常见病因,也是全球可预防性感染致盲的首要原因。衣原体7.5 kb质粒和染色体基因CT135已被证明在非人灵长类动物和小鼠感染模型中都是重要的毒力因子。沙眼衣原体质粒缺陷型泌尿生殖道分离株和预测的CT135无效突变体已在雌性小鼠生殖道模型中分别进行了评估,二者均显示出感染性和毒力降低。然而,这些减毒表型尚未在小鼠模型中进行综合评估。在此,我们在小鼠模型中测试了质粒缺陷型、CT135缺失型或具有这些减毒基因型组合的沙眼衣原体D血清型菌株的感染性。我们发现,质粒的存在会导致感染负担更高,而CT135则会促成更持久或慢性的感染。不出所料,这些基因缺陷的组合产生了一种具有更强感染减毒特性的菌株。

相似文献

4
Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection.
Infect Immun. 2014 Aug;82(8):3341-9. doi: 10.1128/IAI.01795-14. Epub 2014 May 27.
5
Chlamydia trachomatis virulence factor CT135 is stable in vivo but highly polymorphic in vitro.
Pathog Dis. 2015 Aug;73(6):ftv043. doi: 10.1093/femspd/ftv043. Epub 2015 Jun 24.
6
Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model.
Pathog Dis. 2014 Feb;70(1):61-9. doi: 10.1111/2049-632X.12086. Epub 2013 Sep 10.
7
Virulence Protein Pgp3 Is Insufficient To Mediate Plasmid-Dependent Infectivity of Chlamydia trachomatis.
Infect Immun. 2023 Feb 16;91(2):e0039222. doi: 10.1128/iai.00392-22. Epub 2023 Feb 1.
9
Chlamydial Plasmid-Dependent Pathogenicity.
Trends Microbiol. 2017 Feb;25(2):141-152. doi: 10.1016/j.tim.2016.09.006. Epub 2016 Oct 3.

引用本文的文献

3
The Inclusion Membrane Protein CTL0390 Mediates Host Cell Exit via Lysis through STING Activation.
Infect Immun. 2022 Jun 16;90(6):e0019022. doi: 10.1128/iai.00190-22. Epub 2022 May 19.
4
The multiple functions of the numerous secreted proteins: the tip of the iceberg.
Microb Cell. 2019 Aug 21;6(9):414-449. doi: 10.15698/mic2019.09.691.
6
Update on Chlamydia trachomatis Vaccinology.
Clin Vaccine Immunol. 2017 Apr 5;24(4). doi: 10.1128/CVI.00543-16. Print 2017 Apr.
7
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.
PLoS One. 2015 Jul 24;10(7):e0133420. doi: 10.1371/journal.pone.0133420. eCollection 2015.
9
Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner.
J Bacteriol. 2014 Aug 15;196(16):2989-3001. doi: 10.1128/JB.01677-14. Epub 2014 Jun 9.

本文引用的文献

1
Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model.
Pathog Dis. 2014 Feb;70(1):61-9. doi: 10.1111/2049-632X.12086. Epub 2013 Sep 10.
4
Chlamydia trachomatis control requires a vaccine.
Vaccine. 2013 Apr 8;31(15):1892-7. doi: 10.1016/j.vaccine.2013.01.024. Epub 2013 Jan 29.
5
Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes.
Infect Immun. 2013 Mar;81(3):636-44. doi: 10.1128/IAI.01305-12. Epub 2013 Jan 14.
6
A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates.
J Exp Med. 2011 Oct 24;208(11):2217-23. doi: 10.1084/jem.20111266. Epub 2011 Oct 10.
8
Chlamydia vaccine candidates and tools for chlamydial antigen discovery.
Expert Rev Vaccines. 2009 Oct;8(10):1365-77. doi: 10.1586/erv.09.98.
9
The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells.
Infect Immun. 2008 Aug;76(8):3415-28. doi: 10.1128/IAI.01377-07. Epub 2008 May 12.
10
The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor.
Infect Immun. 2008 Jun;76(6):2273-83. doi: 10.1128/IAI.00102-08. Epub 2008 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验