Gálvez Akemi, Iglesias Andrés
Department of Applied Mathematics and Computational Sciences, E.T.S.I. Caminos, Canales y Puertos, University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain.
Department of Applied Mathematics and Computational Sciences, E.T.S.I. Caminos, Canales y Puertos, University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain ; Department of Information Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
ScientificWorldJournal. 2013 Nov 24;2013:283919. doi: 10.1155/2013/283919. eCollection 2013.
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.
将样条曲线拟合到数据点在许多应用领域中都是一个非常重要的问题。它也具有挑战性,因为这些曲线通常以高度相互关联的非线性方式依赖于许多连续变量。一般来说,无法通过解析方法计算这些参数,因此该问题被表述为一个连续非线性优化问题,而传统的优化技术通常对此无能为力。本文提出了一种新的受生物启发的方法来解决这个问题。在这种方法中,通过两种技术的组合来进行优化。首先,我们对节点应用间接方法,其中节点最初不是优化的对象,而是用一种粗略的近似方案预先计算出来。其次,一种强大的受生物启发的元启发式技术——萤火虫算法,被应用于数据参数化的优化;然后,使用德布尔方法对节点向量进行细化,从而得到对最优节点向量更好的近似。该方案将原来的非线性连续优化问题转化为一个凸优化问题,通过奇异值分解来求解。我们的方法应用于来自CAD/CAM领域的一些说明性实际例子。我们的实验结果表明,所提出的方案能够非常有效地解决原来的连续非线性优化问题。