Suppr超能文献

基于莱维飞行的布谷鸟搜索算法用于全局支持曲线数据拟合中的加权贝叶斯能量泛函优化

Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting.

作者信息

Gálvez Akemi, Iglesias Andrés, Cabellos Luis

机构信息

Department of Applied Mathematics and Computational Sciences, E.T.S.I. Caminos, Canales y Puertos, University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain.

Department of Applied Mathematics and Computational Sciences, E.T.S.I. Caminos, Canales y Puertos, University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain ; Department of Information Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.

出版信息

ScientificWorldJournal. 2014;2014:138760. doi: 10.1155/2014/138760. Epub 2014 May 28.

Abstract

The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

摘要

数据拟合问题在许多理论和应用领域都非常重要。在本文中,我们考虑通过使用全局支撑逼近曲线来优化用于数据拟合的加权贝叶斯能量泛函的问题。所谓全局支撑曲线,是指表示为基函数线性组合的曲线,其支撑是问题的整个定义域,这与计算机辅助设计/计算机辅助制造(CAD/CAM)和计算机图形学中由分段函数(如B样条和非均匀有理B样条(NURBS))驱动的其他常见方法相反,后者提供对曲线形状的局部控制。我们的方法应用了一种强大的受自然启发的元启发式算法,称为布谷鸟搜索,它是最近为解决优化问题而引入的。该方法的一个主要优点是其简单性:布谷鸟搜索只需要两个参数,比其他元启发式方法少得多,因此参数调整成为一项非常简单的任务。本文表明,这种新方法可以成功地用于解决我们的优化问题。为了检验我们方法的性能,它已被应用于五个不同类型的示例,包括具有挑战性特征(如尖点和自相交)的开放和封闭二维及三维曲线。我们的结果表明,该方法表现良好,能够以惊人的直接方式解决我们的最小化问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/407d/4058130/a522d3f45012/TSWJ2014-138760.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验