Institut de Chimie de Nice, UMR 7272, Université de Nice-Sophia Antipolis, CNRS , Parc Valrose, 06108 Nice Cedex 2, France.
J Phys Chem B. 2014 Jan 23;118(3):676-81. doi: 10.1021/jp4093964. Epub 2014 Jan 13.
Hydrogenases are promising candidates for the catalytic production of green energy by means of biological ways. The major impediment to such a production is rooted in their inhibition under aerobic conditions. In this work, we model dioxygen migration rates in mutants of a hydrogenase of Desulfovibrio fructusovorans. The approach relies on the calculation of the whole potential of mean force for O2 migration within the wild-type as well as in V74M, V74F, and V74Q mutant channels. The three free-energy barriers along the entire migration pathway are converted into chemical rates through modeling based on Transition State Theory. The use of such a model recovers the trend of O2 migration rates among the series.
氢化酶是通过生物途径催化生产绿色能源的有前途的候选者。这种生产的主要障碍源于它们在有氧条件下的抑制。在这项工作中,我们对来自果糖脱硫弧菌的氢化酶的突变体中的氧气迁移率进行了建模。该方法依赖于计算野生型以及 V74M、V74F 和 V74Q 突变体通道中 O2 迁移的平均力势的整体势能。通过基于过渡态理论的建模,将整个迁移途径中的三个自由能势垒转化为化学速率。这种模型的使用恢复了该系列中 O2 迁移率的趋势。