Oteri Francesco, Baaden Marc, Lojou Elisabeth, Sacquin-Mora Sophie
Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France.
J Phys Chem B. 2014 Dec 4;118(48):13800-11. doi: 10.1021/jp5089965. Epub 2014 Nov 21.
[NiFe]-hydrogenases catalyze the cleavage of molecular hydrogen into protons and electrons and represent promising tools for H2-based technologies such as biofuel cells. However, many aspects of these enzymes remain to be understood, in particular how the catalytic center can be protected from irreversible inactivation by O2. In this work, we combined homology modeling, all-atom molecular dynamics, and coarse-grain Brownian dynamics simulations to investigate and compare the dynamic and mechanical properties of two [NiFe]-hydrogenases: the soluble O2-sensitive enzyme from Desulfovibrio fructosovorans, and the O2-tolerant membrane-bound hydrogenase from Aquifex aeolicus. We investigated the diffusion pathways of H2 from the enzyme surface to the central [NiFe] active site, and the possible proton pathways that are used to evacuate hydrogen after the oxidation reaction. Our results highlight common features of the two enzymes, such as a Val/Leu/Arg triad of key residues that controls ligand migration and substrate access in the vicinity of the active site, or the key role played by a Glu residue for proton transfer after hydrogen oxidation. We show specificities of each hydrogenase regarding the enzymes internal tunnel network or the proton transport pathways.
[NiFe]氢化酶催化分子氢裂解为质子和电子,是生物燃料电池等基于氢气的技术中很有前景的工具。然而,这些酶的许多方面仍有待了解,尤其是催化中心如何免受氧气不可逆失活的影响。在这项工作中,我们结合同源建模、全原子分子动力学和粗粒度布朗动力学模拟,研究并比较了两种[NiFe]氢化酶的动力学和力学性质:来自果糖脱硫弧菌的可溶性氧敏感酶,以及来自嗜热栖热菌的耐氧膜结合氢化酶。我们研究了氢气从酶表面扩散到中心[NiFe]活性位点的途径,以及氧化反应后用于排出氢气的可能质子途径。我们的结果突出了这两种酶的共同特征,例如控制活性位点附近配体迁移和底物进入的关键残基Val/Leu/Arg三联体,或谷氨酸残基在氢气氧化后质子转移中所起的关键作用。我们展示了每种氢化酶在酶内部隧道网络或质子传输途径方面的特异性。