Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
J Chem Inf Model. 2024 May 27;64(10):4193-4203. doi: 10.1021/acs.jcim.4c00187. Epub 2024 May 10.
[NiFe] hydrogenases can act as efficient catalysts for hydrogen oxidation and biofuel production. However, some [NiFe] hydrogenases are inhibited by gas molecules present in the environment, such as O and CO. One strategy to engineer [NiFe] hydrogenases and achieve O- and CO-tolerant enzymes is by introducing point mutations to block the access of inhibitors to the catalytic site. In this work, we characterized the unbinding pathways of CO in the complex with the wild-type and 10 different mutants of [NiFe] hydrogenase from using τ-random accelerated molecular dynamics (τRAMD) to enhance the sampling of unbinding events. The ranking provided by the relative residence times computed with τRAMD is in agreement with experiments. Extensive data analysis of the simulations revealed that from the two bottlenecks proposed in previous studies for the transit of gas molecules (residues 74 and 122 and residues 74 and 476), only one of them (residues 74 and 122) effectively modulates diffusion and residence times for CO. We also computed pathway probabilities for the unbinding of CO, O, and H from the wild-type [NiFe] hydrogenase, and we observed that while the most probable pathways are the same, the secondary pathways are different. We propose that introducing mutations to block the most probable paths, in combination with mutations to open the main secondary path used by H, can be a feasible strategy to achieve CO and O resistance in the [NiFe] hydrogenase from .
[NiFe]氢化酶可以作为高效的催化剂,用于氢气氧化和生物燃料生产。然而,一些 [NiFe]氢化酶会被环境中存在的气体分子(如 O 和 CO)抑制。一种工程化 [NiFe]氢化酶并实现对 O 和 CO 耐受的酶的策略是引入点突变,以阻止抑制剂进入催化位点。在这项工作中,我们使用 τ-随机加速分子动力学(τRAMD)来增强非结合事件的采样,对来自 的野生型和 10 种不同突变体的 [NiFe]氢化酶与 CO 的复合物中的 CO 非结合途径进行了表征。τRAMD 计算的相对停留时间提供的排序与实验结果一致。对模拟的广泛数据分析表明,在先前研究中提出的两种气体分子(残基 74 和 122 以及残基 74 和 476)传输的瓶颈中,只有一个(残基 74 和 122)有效地调节了 CO 的扩散和停留时间。我们还计算了野生型 [NiFe]氢化酶中 CO、O 和 H 的非结合途径概率,我们观察到,虽然最可能的途径是相同的,但次要途径是不同的。我们提出,引入突变以阻断最可能的途径,结合引入突变以打开 H 使用的主要次要途径,可能是实现 [NiFe]氢化酶对 CO 和 O 抗性的一种可行策略。