Suppr超能文献

多状态模型转换率建模中参数化和半参数化Cox模型的比较:在伊朗癌症研究所接受手术的胃癌患者中的应用

Comparison between parametric and semi-parametric cox models in modeling transition rates of a multi-state model: application in patients with gastric cancer undergoing surgery at the Iran cancer institute.

作者信息

Zare Ali, Mahmoodi Mahmood, Mohammad Kazem, Zeraati Hojjat, Hosseini Mostafa, Naieni Kourosh Holakouie

机构信息

Department of Epidemiology and Biostatistics, University of Medical Sciences, Tehran, Iran E-mail :

出版信息

Asian Pac J Cancer Prev. 2014 Jan;14(11):6751-5. doi: 10.7314/apjcp.2013.14.11.6751.

Abstract

BACKGROUND

Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models.

MATERIALS AND METHODS

Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses.

RESULTS

Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state 1?state 2), death hazard without a relapse (state 1?state 3) and death hazard with a relapse (state 2?state 3), respectively.

CONCLUSIONS

Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multi- state models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.

摘要

背景

对于胃癌等死亡率较高的癌症进行研究,需要使用能够更深入检查疾病进程并为研究人员提供更准确数据的模型。基于此问题已设计出各种模型,本研究旨在评估此类模型。

材料与方法

分析了1995年至1999年在伊朗癌症研究所接受手术的330例胃癌患者的数据。在对多状态模型不同状态间的转移率进行建模时,使用Cox - Snell残差和赤池信息准则来比较参数化和半参数化Cox模型。所有数据分析均使用R 2.15.1软件。

结果

对不同状态间所有可能转移的Cox - Snell残差和赤池信息准则分析表明,参数化模型拟合效果更好。对数逻辑斯蒂模型、冈珀茨模型和对数正态模型分别是复发风险转移率(状态1→状态2)、无复发死亡风险(状态1→状态3)和复发死亡风险(状态2→状态3)建模的良好选择。

结论

尽管大多数癌症研究人员在对多状态模型的转移率进行建模时经常使用半参数化Cox模型,但在类似情况下,参数化模型更具可信度,因为它们不需要比例风险假设,并且在不做此假设时会考虑下一状态发生时间的特定统计分布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验