Song Mingxia, Stolz Arnaud, Zhang Douguo, Arocas Juan, Markey Laurent, Colas des Francs Gérard, Dujardin Erik, Bouhelier Alexandre
Laboratoire Interdisciplinaire Carnot de Bourgogne CNRS-UMR 6303, Université de Bourgogne.
J Vis Exp. 2013 Dec 11(82):e51048. doi: 10.3791/51048.
Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support. In this context, metal nanowires are especially desirable for realizing dense routing networks. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires randomly distributed on a glass substrate. The positions of the nanowire ends with respect to predefined landmarks are precisely located using standard optical transmission microscopy before encapsulation in an electron-sensitive resist. Trenches representing the electrode layout are subsequently designed by electron-beam lithography. Metal electrodes are then fabricated by thermally evaporating a Cr/Au layer followed by a chemical lift-off. The contacted silver nanowires are finally transferred to a leakage radiation microscope for surface plasmon excitation and characterization. Surface plasmons are launched in the nanowires by focusing a near infrared laser beam on a diffraction-limited spot overlapping one nanowire extremity. For sufficiently large nanowires, the surface plasmon mode leaks into the glass substrate. This leakage radiation is readily detected, imaged, and analyzed in the different conjugate planes in leakage radiation microscopy. The electrical terminals do not affect the plasmon propagation. However, a current-induced morphological deterioration of the nanowire drastically degrades the flow of surface plasmons. The combination of surface plasmon leakage radiation microscopy with a simultaneous analysis of the nanowire electrical transport characteristics reveals the intrinsic limitations of such plasmonic circuitry.
等离子体激元学是一种新兴技术,能够在同一信息载体上同时传输等离子体激元信号和电子信号。在这种背景下,金属纳米线对于实现密集路由网络尤为理想。操作这种基于纳米线的共享平台的一个先决条件是我们要有能力与单个金属纳米线进行电接触,并在该信息载体中高效激发表面等离子体激元。在本文中,我们描述了一种将电终端连接到随机分布在玻璃基板上的化学合成银纳米线的方法。在将纳米线封装在电子敏感抗蚀剂中之前,使用标准光学透射显微镜精确确定纳米线末端相对于预定义标记的位置。随后通过电子束光刻设计代表电极布局的沟槽。然后通过热蒸发Cr/Au层并进行化学剥离来制造金属电极。最后将连接好的银纳米线转移到泄漏辐射显微镜中进行表面等离子体激元激发和表征。通过将近红外激光束聚焦在与一根纳米线末端重叠的衍射极限光斑上,在纳米线中激发表面等离子体激元。对于足够粗的纳米线,表面等离子体激元模式会泄漏到玻璃基板中。这种泄漏辐射很容易在泄漏辐射显微镜的不同共轭平面中被检测、成像和分析。电终端不会影响等离子体激元的传播。然而,电流引起的纳米线形态恶化会严重降低表面等离子体激元的流动。表面等离子体激元泄漏辐射显微镜与纳米线电输运特性同步分析的结合揭示了这种等离子体激元电路的内在局限性。