Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec, Canada.
Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec, Canada.
Sci Total Environ. 2014 Mar 1;473-474:372-80. doi: 10.1016/j.scitotenv.2013.12.039. Epub 2013 Dec 27.
This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal-Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal-Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m(3) in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists.
本研究提出了一种基于放射性地球化学数据与魁北克省(加拿大)室内氡测量相结合的预测室内氡潜在风险的方法。魁北克省卫生部门要求绘制该地图,以确定氡风险地区,从而管理与室内氡接触相关的人口风险。三项放射性地球化学指标,包括(1)航空地表伽马辐射测量的铀当量浓度(eU)、(2)沉积物中的铀浓度测量、(3)基岩和表土地质,与 3082 个地下室氡浓度测量相结合,以确定氡风险地区。研究表明,使用基于等级的 Kruskal-Wallis 单向方差分析,可以确定这三个指标的阈值,这些阈值暗示了氡潜在风险的统计学上显著不同水平。将三个离散的放射性地球化学数据集组合成一个总预测的氡潜在风险,该风险样本覆盖了研究区域的 98%。组合过程也基于 Kruskal-Wallis 单向方差分析。创建了四个统计学上显著不同的预测氡潜在风险水平:低、中、高和极高。在低和中预测氡潜在风险中,分别有 10%和 13%的住宅超过了加拿大 200 Bq/m³的氡指导值。在高和极高预测氡潜在风险中,这一比例分别上升到 22%和 45%。基于放射性地球化学数据的室内氡潜在风险预测图是使用基于地下室氡测量的住宅确认氡暴露地图进行验证的。结果表明,即使在没有室内氡测量的地区,基于放射性地球化学数据的预测氡潜在风险地图也能可靠地识别氡风险地区。