Suppr超能文献

美国乔治亚州亚特兰大市住房和地质条件对室内氡浓度的综合影响。

Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States.

机构信息

Department of Geosciences, Georgia State University, 38 Peachtree Center Avenue, Atlanta, GA 30303, United States of America.

Department of Geosciences, Georgia State University, 38 Peachtree Center Avenue, Atlanta, GA 30303, United States of America; Critigen LLC, 7555 East Hampden Avenue, Suite 415, Denver, CO 80231, United States of America.

出版信息

Sci Total Environ. 2019 Jun 10;668:500-511. doi: 10.1016/j.scitotenv.2019.02.257. Epub 2019 Feb 20.

Abstract

Radon is a naturally released radioactive carcinogenic gas. To estimate radon exposure, studies have examined various risk factors, but limited information exists pertaining to the confluent impact of housing characteristics and geology. This study evaluated the efficacy of housing and geological characteristics to predict radon risk in DeKalb County, Georgia, USA. Four major types of data were used: (1) three databases of indoor radon concentrations (n = 6757); (2) geologic maps of rock types and fault zones; (3) a database of 402 in situ measurements of gamma emissions, and (4) two databases of housing characteristics. The Getis-Ord method was used to delineate hot spots of radon concentrations. Empirical Bayesian Kriging was used to predict gamma radiation at each radon test site. Chi-square tests, bivariate correlation coefficients, and logistic regression were used to examine the impact of geological and housing factors on radon. The results showed that indoor radon levels were more likely to exceed the action level-4 pCi/L (148 Bq/m) designated by the U.S. Environmental Protection Agency-in fault zones, were significantly positively correlated to gamma readings, but significantly negatively related to the presence of a crawlspace foundation and its combination with a slab. The findings suggest that fault mapping and in situ gamma ray measurements, coupled with analysis of foundation types and delineation of hot spots, may be used to prioritize areas for radon screening.

摘要

氡是一种天然释放的放射性致癌气体。为了评估氡暴露,研究已经检查了各种风险因素,但有关住房特征和地质综合影响的信息有限。本研究评估了住房和地质特征在美国佐治亚州迪卡尔布县预测氡风险的效果。使用了四种主要类型的数据:(1)室内氡浓度的三个数据库(n=6757);(2)岩石类型和断层带的地质图;(3)402 个伽马发射原位测量数据库,以及(4)两个住房特征数据库。Getis-Ord 方法用于划定氡浓度热点。经验贝叶斯克里金用于预测每个氡测试点的伽马辐射。卡方检验、二元相关系数和逻辑回归用于研究地质和住房因素对氡的影响。结果表明,室内氡水平更有可能超过美国环境保护署指定的行动水平-4 pCi/L(148 Bq/m),在断层带中,与伽马读数呈显著正相关,但与存在爬行空间基础及其与平板的组合呈显著负相关。研究结果表明,断层测绘和原位伽马射线测量,加上基础类型分析和热点划定,可用于优先进行氡筛选。

相似文献

1
Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States.
Sci Total Environ. 2019 Jun 10;668:500-511. doi: 10.1016/j.scitotenv.2019.02.257. Epub 2019 Feb 20.
2
The use of gamma-survey measurements to better understand radon potential in urban areas.
Sci Total Environ. 2017 Dec 31;607-608:888-899. doi: 10.1016/j.scitotenv.2017.07.022. Epub 2017 Jul 27.
4
Methodology developed to make the Quebec indoor radon potential map.
Sci Total Environ. 2014 Mar 1;473-474:372-80. doi: 10.1016/j.scitotenv.2013.12.039. Epub 2013 Dec 27.
5
Distance to faults as a proxy for radon gas concentration in dwellings.
J Environ Radioact. 2016 Feb;152:8-15. doi: 10.1016/j.jenvrad.2015.10.023. Epub 2015 Nov 28.
6
8
The use of mapped geology as a predictor of radon potential in Norway.
J Environ Radioact. 2017 Jan;166(Pt 2):341-354. doi: 10.1016/j.jenvrad.2016.05.031. Epub 2016 Jun 11.
10
Modeling of geogenic radon in Switzerland based on ordered logistic regression.
J Environ Radioact. 2017 Jan;166(Pt 2):376-381. doi: 10.1016/j.jenvrad.2016.06.007. Epub 2016 Jun 22.

引用本文的文献

1
High-resolution national radon maps based on massive indoor measurements in the United States.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2408084121. doi: 10.1073/pnas.2408084121. Epub 2025 Jan 14.
2
Systematic review of statistical methods for the identification of buildings and areas with high radon levels.
Front Public Health. 2024 Sep 11;12:1460295. doi: 10.3389/fpubh.2024.1460295. eCollection 2024.
3
Associations Between Gestational Residential Radon Exposure and Term Low Birthweight in Connecticut, USA.
Epidemiology. 2024 Nov 1;35(6):834-843. doi: 10.1097/EDE.0000000000001771. Epub 2024 Jul 23.
4
Predicting Monthly Community-Level Radon Concentrations with Spatial Random Forest in the Northeastern and Midwestern United States.
Environ Sci Technol. 2023 Nov 21;57(46):18001-18012. doi: 10.1021/acs.est.2c08840. Epub 2023 Oct 15.
5
Geologic, seasonal, and atmospheric predictors of indoor home radon values.
Environ Res Health. 2023 Jun;1(2). doi: 10.1088/2752-5309/acdcb3. Epub 2023 Jun 21.
6
Active Monitoring of Residential Radon in Rome: A Pilot Study.
Int J Environ Res Public Health. 2022 Oct 26;19(21):13917. doi: 10.3390/ijerph192113917.
7
A Geologically Based Indoor-Radon Potential Map of Kentucky.
Geohealth. 2020 Nov 1;4(11):e2020GH000263. doi: 10.1029/2020GH000263. eCollection 2020 Nov.

本文引用的文献

1
Inhalation dose due to Rn-222, Rn-220 and their progeny in indoor environments.
Appl Radiat Isot. 2018 Feb;132:116-121. doi: 10.1016/j.apradiso.2017.11.027. Epub 2017 Nov 27.
2
Indoor air quality in energy-efficient dwellings: Levels and sources of pollutants.
Indoor Air. 2018 Mar;28(2):318-338. doi: 10.1111/ina.12431. Epub 2017 Nov 8.
3
The use of gamma-survey measurements to better understand radon potential in urban areas.
Sci Total Environ. 2017 Dec 31;607-608:888-899. doi: 10.1016/j.scitotenv.2017.07.022. Epub 2017 Jul 27.
4
Residential radon in Galicia: a cross-sectional study in a radon-prone area.
J Radiol Prot. 2017 Sep;37(3):728-741. doi: 10.1088/1361-6498/aa7922. Epub 2017 Jun 13.
5
A Pilot Study to Examine Exposure to Residential Radon in Under-Sampled Census Tracts of DeKalb County, Georgia, in 2015.
Int J Environ Res Public Health. 2017 Mar 22;14(3):332. doi: 10.3390/ijerph14030332.
6
Predictors and Spatial Variation of Radon Testing in Illinois, 2005-2012.
J Public Health Manag Pract. 2018 Mar/Apr;24(2):e1-e9. doi: 10.1097/PHH.0000000000000534.
7
Critical aspects of radon remediation in karst limestone areas: some experiences in schools of South Italy.
J Radiol Prot. 2017 Mar 20;37(1):160-175. doi: 10.1088/1361-6498/aa5599. Epub 2017 Jan 24.
8
Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes.
Risk Anal. 2016 Nov;36(11):2105-2119. doi: 10.1111/risa.12570. Epub 2016 Feb 16.
9
Small cell lung cancer in never-smokers.
Eur Respir J. 2016 Mar;47(3):947-53. doi: 10.1183/13993003.01524-2015. Epub 2015 Dec 23.
10
Hot Spots and Hot Times: Wildlife Road Mortality in a Regional Conservation Corridor.
Environ Manage. 2015 Oct;56(4):874-89. doi: 10.1007/s00267-015-0566-1. Epub 2015 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验