Department of Mathematics and Statistics, Lancaster University, , Lancaster LA1 4YF, UK.
Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120030. doi: 10.1098/rsta.2012.0030. Print 2014 Feb 13.
To each discrete translationally periodic bar-joint framework C in Rd, we associate a matrix-valued function ΦC(Z) defined on the d-torus. The rigid unit mode (RUM) spectrum Ω(C) of C is defined in terms of the multi-phases of phase-periodic infinitesimal flexes and is shown to correspond to the singular points of the function Z → rankΦC(Z) and also to the set of wavevectors of harmonic excitations which have vanishing energy in the long wavelength limit. To a crystal framework in Maxwell counting equilibrium, which corresponds to ΦC(Z) being square, the determinant of ΦC(Z) gives rise to a unique multi-variable polynomial p(C)(Z1, . . . , Zd). For ideal zeolites, the algebraic variety of zeros of pC(Z) on the d-torus coincides with the RUM spectrum. The matrix function is related to other aspects of idealized framework rigidity and flexibility, and in particular leads to an explicit formula for the number of supercell-periodic floppy modes. In the case of certain zeolite frameworks in dimensions two and three, direct proofs are given to show the maximal floppy mode property (order N). In particular, this is the case for the cubic symmetry sodalite framework and some other idealized zeolites.
对于 Rd 中的每个离散平移周期杆节框架 C,我们都关联一个定义在 d-环面上的矩阵值函数 ΦC(Z)。C 的刚性单位模态 (RUM) 谱 Ω(C) 是根据相位周期无穷小挠曲的多相定义的,并且被证明与函数 Z → rankΦC(Z) 的奇异点以及具有在长波长极限下能量为零的谐波激发的波矢相对应。对于处于 Maxwell 计数平衡的晶体框架,对应于 ΦC(Z) 是正方形的,ΦC(Z)的行列式产生一个唯一的多变量多项式 p(C)(Z1,...,Zd)。对于理想沸石,pC(Z)在 d-环面上的零点的代数簇与 RUM 谱重合。该矩阵函数与理想化框架刚性和柔性的其他方面有关,特别是导致了超胞周期柔模数目的显式公式。在二维和三维的某些沸石框架的情况下,给出了直接的证明来证明最大柔模性质 (阶数为 N)。特别是,立方对称 sodalite 框架和其他一些理想化沸石就是这种情况。