Suppr超能文献

平面周期性框架的提升与应力

Liftings and stresses for planar periodic frameworks.

作者信息

Borcea Ciprian, Streinu Ileana

机构信息

Department of Mathematics, Rider University, Lawrenceville, NJ 08648, USA.

Department of Computer Science, Smith College, Northampton, MA 01063, USA.

出版信息

Discrete Comput Geom. 2015 Jun 1;53(4):747-782. doi: 10.1007/s00454-015-9689-7. Epub 2015 Apr 18.

Abstract

We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.

摘要

我们阐述并证明了麦克斯韦定理的一个周期性类似物,该定理将受力平面框架及其提升与具有球面拓扑的多面体表面联系起来。我们利用提升定理证明了平面周期性伪三角剖分的变形和刚性理论性质,推广了其有限对应物已知的特征。然后将这些性质应用于源自数学晶体学和材料科学的问题,涉及平面周期性负泊松比结构和超刚性周期性框架。

相似文献

1
Liftings and stresses for planar periodic frameworks.平面周期性框架的提升与应力
Discrete Comput Geom. 2015 Jun 1;53(4):747-782. doi: 10.1007/s00454-015-9689-7. Epub 2015 Apr 18.
2
Geometric auxetics.几何负泊松比材料
Proc Math Phys Eng Sci. 2015 Dec 8;471(2184):20150033. doi: 10.1098/rspa.2015.0033.
3
Saturation and periodic self-stress in geometric auxetics.几何负泊松比材料中的饱和度和周期性自应力
R Soc Open Sci. 2022 Aug 31;9(8):220765. doi: 10.1098/rsos.220765. eCollection 2022 Aug.
4
Periodic Auxetics: Structure and Design.周期性负泊松比材料:结构与设计
Q J Mech Appl Math. 2018 May;71(2):125-138. doi: 10.1093/qjmam/hbx028. Epub 2017 Dec 11.
5
Auxetic deformations and elliptic curves.拉胀变形与椭圆曲线。
Comput Aided Geom Des. 2018 Mar;61:9-19. doi: 10.1016/j.cagd.2018.02.003. Epub 2018 Feb 24.
6
Finding auxetic frameworks in periodic tessellations.在周期性镶嵌中寻找超弹性框架。
Adv Mater. 2011 Jun 17;23(22-23):2669-74. doi: 10.1002/adma.201100268.
7
Fast semi-analytical solution of Maxwell's equations in Born approximation for periodic structures.
J Opt Soc Am A Opt Image Sci Vis. 2016 Apr 1;33(4):610-7. doi: 10.1364/JOSAA.33.000610.
8
New principles for auxetic periodic design.负泊松比周期性设计的新原理。
SIAM J Appl Algebr Geom. 2017;1(1):442-458. doi: 10.1137/16M1088259. Epub 2017 Aug 3.
9
Connectivity of Triangulation Flip Graphs in the Plane.平面三角剖分翻转图的连通性
Discrete Comput Geom. 2022;68(4):1227-1284. doi: 10.1007/s00454-022-00436-2. Epub 2022 Nov 14.
10
Fragmentary and incidental behaviour of columns, slabs and crystals.柱、板和晶体的零碎和偶然行为。
Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120032. doi: 10.1098/rsta.2012.0032. Print 2014 Feb 13.

引用本文的文献

1
Auxetic deformations and elliptic curves.拉胀变形与椭圆曲线。
Comput Aided Geom Des. 2018 Mar;61:9-19. doi: 10.1016/j.cagd.2018.02.003. Epub 2018 Feb 24.
2
Periodic Auxetics: Structure and Design.周期性负泊松比材料:结构与设计
Q J Mech Appl Math. 2018 May;71(2):125-138. doi: 10.1093/qjmam/hbx028. Epub 2017 Dec 11.
3
New principles for auxetic periodic design.负泊松比周期性设计的新原理。
SIAM J Appl Algebr Geom. 2017;1(1):442-458. doi: 10.1137/16M1088259. Epub 2017 Aug 3.
4
Geometric auxetics.几何负泊松比材料
Proc Math Phys Eng Sci. 2015 Dec 8;471(2184):20150033. doi: 10.1098/rspa.2015.0033.

本文引用的文献

1
2
Frameworks with crystallographic symmetry.具有晶体学对称性的框架。
Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120143. doi: 10.1098/rsta.2012.0143. Print 2014 Feb 13.
3
Polynomials for crystal frameworks and the rigid unit mode spectrum.晶体骨架的多项式与刚性单元模式谱。
Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120030. doi: 10.1098/rsta.2012.0030. Print 2014 Feb 13.
5
Poisson's ratio and modern materials.泊松比与现代材料。
Nat Mater. 2011 Oct 24;10(11):823-37. doi: 10.1038/nmat3134.
6
Foam Structures with a Negative Poisson's Ratio.具有负泊松比的泡沫结构。
Science. 1987 Feb 27;235(4792):1038-40. doi: 10.1126/science.235.4792.1038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验