Rudolf Peierls Centre for Theoretical Physics, University of Oxford, , 1 Keble Road, Oxford OX1 3NP, UK.
Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120038. doi: 10.1098/rsta.2012.0038. Print 2014 Feb 13.
We summarize results for two exactly soluble classes of bond-diluted models for rigidity percolation, which can serve as a benchmark for numerical and approximate methods. For bond dilution problems involving rigidity, the number of floppy modes F plays the role of a free energy. Both models involve pathological lattices with two-dimensional vector displacements. The first model involves hierarchical lattices where renormalization group calculations can be used to give exact solutions. Algebraic scaling transformations produce a transition of the second order, with an unstable critical point and associated scaling laws at a mean coordination
我们总结了两类完全可解的键稀释模型的结果,这些模型可作为数值和近似方法的基准。对于涉及刚硬度的键稀释问题,柔性模式 F 的数量起着自由能的作用。这两个模型都涉及二维向量位移的病态晶格。第一个模型涉及层次结构晶格,其中重整化群计算可用于给出精确解。代数标度变换产生二阶相变,具有不稳定的临界点和相关的标度定律,平均配位数