Suppr超能文献

周期性平面圆盘包装。

Periodic planar disc packings.

机构信息

Department of Mathematics, Cornell University, , Ithaca, NY 14853, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120039. doi: 10.1098/rsta.2012.0039. Print 2014 Feb 13.

Abstract

Several conditions are given when a packing of equal discs in a torus is locally maximally dense, where the torus is defined as the quotient of the plane by a two-dimensional lattice. Conjectures are presented that claim that the density of any collectively jammed packing, whose graph does not consist of all triangles, and the torus lattice is the standard triangular lattice, is at most (n/(n + 1))π√12, where n is the number of packing discs in the torus. Several classes of collectively jammed packings are presented where the conjecture holds.

摘要

当在环面(由平面通过二维格点群的商得到的图形)中包装相等的圆盘时,如果满足某些条件,则该包装可以达到局部最大密度。提出了一些猜想,声称对于任何整体卡紧的包装,其图不包含所有三角形,并且环面晶格是标准的三角形晶格,其密度最多为 (n/(n + 1))π√12,其中 n 是环面中包装圆盘的数量。提出了几个整体卡紧包装的类,这些类满足猜想。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验