Suppr超能文献

粘性椎间盘的僵硬

Rigidity for sticky discs.

作者信息

Connelly Robert, Gortler Steven J, Theran Louis

机构信息

Department of Mathematics, Cornell University, Ithaca, NY, USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

出版信息

Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180773. doi: 10.1098/rspa.2018.0773. Epub 2019 Feb 27.

Abstract

We study the combinatorial and rigidity properties of disc packings with generic radii. We show that a packing of discs in the plane with generic radii cannot have more than 2 - 3 pairs of discs in contact. The allowed motions of a packing preserve the disjointness of the disc interiors and tangency between pairs already in contact (modelling a collection of sticky discs). We show that if a packing has generic radii, then the allowed motions are all rigid body motions if and only if the packing has exactly 2 - 3 contacts. Our approach is to study the space of packings with a fixed contact graph. The main technical step is to show that this space is a smooth manifold, which is done via a connection to the Cauchy-Alexandrov stress lemma. Our methods also apply to jamming problems, in which contacts are allowed to break during a motion. We give a simple proof of a finite variant of a recent result of Connelly (Connelly . 2018 (http://arxiv.org/abs/1702.08442)) on the number of contacts in a jammed packing of discs with generic radii.

摘要

我们研究具有一般半径的圆盘填充的组合和刚性性质。我们证明,在平面中具有一般半径的圆盘填充,其相互接触的圆盘对不能超过2 - 3对。填充的允许运动保持圆盘内部的不相交性以及已接触圆盘对之间的相切性(模拟一组粘性圆盘)。我们证明,如果一个填充具有一般半径,那么当且仅当该填充恰好有2 - 3个接触时,其允许运动才都是刚体运动。我们的方法是研究具有固定接触图的填充空间。主要技术步骤是证明这个空间是一个光滑流形,这是通过与柯西 - 亚历山德罗夫应力引理建立联系来完成的。我们的方法也适用于阻塞问题,即在运动过程中允许接触断开的情况。我们给出了一个关于具有一般半径的圆盘阻塞填充中接触数的近期结果(康奈利,2018(http://arxiv.org/abs/1702.08442))的有限变体的简单证明。

相似文献

1
Rigidity for sticky discs.粘性椎间盘的僵硬
Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180773. doi: 10.1098/rspa.2018.0773. Epub 2019 Feb 27.
2
Critical slowing down and hyperuniformity on approach to jamming.在接近堵塞时的临界减速和超均匀性。
Phys Rev E. 2016 Jul;94(1-1):012902. doi: 10.1103/PhysRevE.94.012902. Epub 2016 Jul 8.
3
Jamming graphs: a local approach to global mechanical rigidity.阻塞图:一种解决全局机械刚性的局部方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062130. doi: 10.1103/PhysRevE.88.062130. Epub 2013 Dec 16.
4
Periodic planar disc packings.周期性平面圆盘包装。
Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120039. doi: 10.1098/rsta.2012.0039. Print 2014 Feb 13.
5
The physics of jamming for granular materials: a review.颗粒物质的阻塞物理学:综述。
Rep Prog Phys. 2019 Jan;82(1):012601. doi: 10.1088/1361-6633/aadc3c. Epub 2018 Aug 22.
6
Protocol dependence of the jamming transition.协议依赖性的干扰过渡。
Phys Rev E. 2016 Jan;93(1):012901. doi: 10.1103/PhysRevE.93.012901. Epub 2016 Jan 11.
7
Connecting polymer collapse and the onset of jamming.连接聚合物塌陷与堵塞的起始
Phys Rev E. 2024 Mar;109(3-1):034406. doi: 10.1103/PhysRevE.109.034406.
8
Constraints and vibrations in static packings of ellipsoidal particles.椭球形颗粒静态堆积中的约束与振动
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061305. doi: 10.1103/PhysRevE.85.061305. Epub 2012 Jun 13.
9
Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings.近堵塞无序和有序硬球堆积的对关联函数特征
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011105. doi: 10.1103/PhysRevE.71.011105. Epub 2005 Jan 12.
10
Disordered strictly jammed binary sphere packings attain an anomalously large range of densities.无序的严格堵塞二元球体堆积具有异常大的密度范围。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022205. doi: 10.1103/PhysRevE.88.022205. Epub 2013 Aug 30.

本文引用的文献

3
Rigidity loss in disordered systems: three scenarios.无序系统中的刚性丧失:三种情形。
Phys Rev Lett. 2015 Apr 3;114(13):135501. doi: 10.1103/PhysRevLett.114.135501. Epub 2015 Apr 1.
4
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验