Connelly Robert, Gortler Steven J, Theran Louis
Department of Mathematics, Cornell University, Ithaca, NY, USA.
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180773. doi: 10.1098/rspa.2018.0773. Epub 2019 Feb 27.
We study the combinatorial and rigidity properties of disc packings with generic radii. We show that a packing of discs in the plane with generic radii cannot have more than 2 - 3 pairs of discs in contact. The allowed motions of a packing preserve the disjointness of the disc interiors and tangency between pairs already in contact (modelling a collection of sticky discs). We show that if a packing has generic radii, then the allowed motions are all rigid body motions if and only if the packing has exactly 2 - 3 contacts. Our approach is to study the space of packings with a fixed contact graph. The main technical step is to show that this space is a smooth manifold, which is done via a connection to the Cauchy-Alexandrov stress lemma. Our methods also apply to jamming problems, in which contacts are allowed to break during a motion. We give a simple proof of a finite variant of a recent result of Connelly (Connelly . 2018 (http://arxiv.org/abs/1702.08442)) on the number of contacts in a jammed packing of discs with generic radii.
我们研究具有一般半径的圆盘填充的组合和刚性性质。我们证明,在平面中具有一般半径的圆盘填充,其相互接触的圆盘对不能超过2 - 3对。填充的允许运动保持圆盘内部的不相交性以及已接触圆盘对之间的相切性(模拟一组粘性圆盘)。我们证明,如果一个填充具有一般半径,那么当且仅当该填充恰好有2 - 3个接触时,其允许运动才都是刚体运动。我们的方法是研究具有固定接触图的填充空间。主要技术步骤是证明这个空间是一个光滑流形,这是通过与柯西 - 亚历山德罗夫应力引理建立联系来完成的。我们的方法也适用于阻塞问题,即在运动过程中允许接触断开的情况。我们给出了一个关于具有一般半径的圆盘阻塞填充中接触数的近期结果(康奈利,2018(http://arxiv.org/abs/1702.08442))的有限变体的简单证明。