Suppr超能文献

用于低阻抗生物医学电极的可控金属纳米柱

Controlled metallic nanopillars for low impedance biomedical electrode.

作者信息

Gardner Calvin J, Trisnadi Jonathan, Kim Tae Kyoung, Brammer Karla, Reiss Lina, Chen Li-han, Jin Sungho

机构信息

University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA.

Oregon Health and Science University, School of Medicine, Otolaryngology & Head & Neck Surgery Department, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA.

出版信息

Acta Biomater. 2014 May;10(5):2296-303. doi: 10.1016/j.actbio.2013.12.046. Epub 2013 Dec 30.

Abstract

Radial metallic nanopillar/nanowire structures can be created by a controlled radiofrequency (RF) plasma processing technique on the surface of certain alloy wires, including important biomedical alloys such as MP35N (Co-Ni-Cr-Mo alloy), platinum-iridium and stainless steel. In electrode applications such as pacemakers or neural stimulators, the increase in surface area in elongated MP35N nanopillars allows for decreased surface impedance and greater current density. However, the nanopillar height on MP35N alloy tends to be self-limiting at ∼1-3μm. The objective of this study was to further elongate the radial nanopillars so as to reduce electrode impedance for biomedical electrode applications. Intelligent experimental design allowed for efficient investigation of processing parameters, including plasma material, process duration, power, pressure and repetition. It was found that multi-step repeated processing in the parameter-controlled RF environment could increase nanopillar height to ∼10μm, a 400% improvement, while the RF plasma processing with identical total duration but in a single step did not lead to desired nanopillar elongation. Measurement of electrode impedance in phosphate-buffered saline solution showed an associated decrease to one-fifth of the surface impedance of unprocessed wire for signals below 100Hz. For the purposes of this study, MP35N and Pt-Ir wires were characterized and demonstrated augmented surface impedance properties which, in combination with superior cell integration, enhanced biomedical electrode performance.

摘要

通过一种可控的射频(RF)等离子体处理技术,可以在某些合金丝表面生成径向金属纳米柱/纳米线结构,这些合金丝包括重要的生物医学合金,如MP35N(钴镍铬钼合金)、铂铱合金和不锈钢。在诸如起搏器或神经刺激器等电极应用中,细长的MP35N纳米柱表面积的增加使得表面阻抗降低,电流密度增大。然而,MP35N合金上的纳米柱高度往往会自我限制在约1 - 3μm。本研究的目的是进一步延长径向纳米柱,以降低生物医学电极应用中的电极阻抗。智能实验设计有助于高效研究处理参数,包括等离子体材料、处理持续时间、功率、压力和重复次数。研究发现,在参数可控的射频环境中进行多步重复处理可将纳米柱高度增加到约10μm,提高了400%,而总持续时间相同但采用单步的射频等离子体处理并未使纳米柱达到预期的伸长效果。在磷酸盐缓冲盐溶液中对电极阻抗的测量表明,对于低于100Hz的信号,其表面阻抗降至未处理金属丝的五分之一。在本研究中,对MP35N和铂铱合金丝进行了表征,并展示了增强的表面阻抗特性,结合优异的细胞整合能力,提升了生物医学电极性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验