Suppr超能文献

线粒体黄递酶作为 NAD⁺ 的供体,为柠檬酸循环的片段提供支持,在呼吸抑制期间通过底物水平磷酸化生成 ATP。

Mitochondrial diaphorases as NAD⁺ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition.

机构信息

1Department of Medical Biochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest 1094, Hungary.

出版信息

FASEB J. 2014 Apr;28(4):1682-97. doi: 10.1096/fj.13-243030. Epub 2014 Jan 3.

Abstract

Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.

摘要

琥珀酰辅酶 A 连接酶在基质中通过底物水平磷酸化在没有氧化磷酸化的情况下产生高能磷酸化合物。此外,当电子传递链功能失调时,α-酮戊二酸脱氢酶复合物 (KGDHC) 提供的琥珀酰辅酶 A 对于维持产生 ATP 的琥珀酰辅酶 A 连接酶的功能至关重要,防止腺嘌呤核苷酸转位酶逆转。我们研究了在缺氧条件下和抑制复合物 I 时 KGDHC 的 NAD(+) 供应来源。使用药理学工具和特定的底物,并检查鸽子肝脏组织(其不存在黄递酶活性),我们表明,在呼吸抑制期间,小鼠肝脏中的线粒体黄递酶对 NAD(+) 池的贡献高达 81%。在这些条件下,KGDHC 的功能对于向琥珀酰辅酶 A 连接酶提供琥珀酰辅酶 A 至关重要,它由来自黄递酶的 NAD(+) 支持。通过这个过程,黄递酶有助于在呼吸抑制期间维持底物水平磷酸化,这表现在腺嘌呤核苷酸转位酶的正向运作上。最后,我们表明,黄递酶的可还原底物的再氧化由呼吸链的复合物 III 介导。

相似文献

2
Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD supports substrate-level phosphorylation during respiratory inhibition.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):909-924. doi: 10.1016/j.bbabio.2018.05.002. Epub 2018 May 7.
3
Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle.
Neuropharmacology. 2017 Sep 1;123:287-298. doi: 10.1016/j.neuropharm.2017.05.009. Epub 2017 May 8.
5
The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation.
FASEB J. 2013 Jun;27(6):2392-406. doi: 10.1096/fj.12-220202. Epub 2013 Mar 8.
6
Acute sources of mitochondrial NAD during respiratory chain dysfunction.
Exp Neurol. 2020 May;327:113218. doi: 10.1016/j.expneurol.2020.113218. Epub 2020 Feb 5.
8
The Effect of 2-Ketobutyrate on Mitochondrial Substrate-Level Phosphorylation.
Neurochem Res. 2019 Oct;44(10):2301-2306. doi: 10.1007/s11064-019-02759-8. Epub 2019 Feb 27.
9
Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
J Neurosci. 2004 Sep 8;24(36):7779-88. doi: 10.1523/JNEUROSCI.1899-04.2004.
10
Unity and diversity in some bacterial citric acid-cycle enzymes.
Adv Microb Physiol. 1981;22:185-244. doi: 10.1016/s0065-2911(08)60328-8.

引用本文的文献

1
Maintained mitochondrial integrity without oxygen in the anoxia-tolerant crucian carp.
J Exp Biol. 2024 Oct 15;227(20). doi: 10.1242/jeb.247409. Epub 2024 Jul 1.
2
Complex I activity in hypoxia: implications for oncometabolism.
Biochem Soc Trans. 2024 Apr 24;52(2):529-538. doi: 10.1042/BST20230189.
4
A coordinated multiorgan metabolic response contributes to human mitochondrial myopathy.
EMBO Mol Med. 2023 Jul 10;15(7):e16951. doi: 10.15252/emmm.202216951. Epub 2023 May 24.
5
Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle.
Mol Metab. 2021 Dec;54:101389. doi: 10.1016/j.molmet.2021.101389. Epub 2021 Nov 5.
6
Nicotinamide phosphoribosyltransferase‑related signaling pathway in early Alzheimer's disease mouse models.
Mol Med Rep. 2019 Dec;20(6):5163-5171. doi: 10.3892/mmr.2019.10782. Epub 2019 Oct 30.
7
GABA synaptopathy promotes the elevation of caspases 3 and 9 as pro-apoptotic markers in Egyptian patients with autism spectrum disorder.
Acta Neurol Belg. 2021 Apr;121(2):489-501. doi: 10.1007/s13760-019-01226-z. Epub 2019 Oct 31.
8
Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis.
ASN Neuro. 2018 Jan-Dec;10:1759091418818261. doi: 10.1177/1759091418818261.
9
The Effect of 2-Ketobutyrate on Mitochondrial Substrate-Level Phosphorylation.
Neurochem Res. 2019 Oct;44(10):2301-2306. doi: 10.1007/s11064-019-02759-8. Epub 2019 Feb 27.
10
Mild metabolic perturbations alter succinylation of mitochondrial proteins.
J Neurosci Res. 2017 Nov;95(11):2244-2252. doi: 10.1002/jnr.24103. Epub 2017 Jun 20.

本文引用的文献

1
Mitochondrial targeting of mouse NQO1 and CYP1B1 proteins.
Biochem Biophys Res Commun. 2013 Jun 14;435(4):727-32. doi: 10.1016/j.bbrc.2013.05.051. Epub 2013 May 18.
2
The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation.
FASEB J. 2013 Jun;27(6):2392-406. doi: 10.1096/fj.12-220202. Epub 2013 Mar 8.
3
Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex.
J Neurosci Res. 2013 Aug;91(8):1030-43. doi: 10.1002/jnr.23196. Epub 2013 Feb 1.
4
Mitochondrial metabolism, sirtuins, and aging.
Cold Spring Harb Perspect Biol. 2012 Dec 1;4(12):a013102. doi: 10.1101/cshperspect.a013102.
5
Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging.
Int J Biochem Cell Biol. 2012 Aug;44(8):1315-20. doi: 10.1016/j.biocel.2012.04.021. Epub 2012 May 7.
6
Mutations in the dimer interface of dihydrolipoamide dehydrogenase promote site-specific oxidative damages in yeast and human cells.
J Biol Chem. 2011 Nov 18;286(46):40232-45. doi: 10.1074/jbc.M111.274415. Epub 2011 Sep 19.
7
The "B space" of mitochondrial phosphorylation.
J Neurosci Res. 2011 Dec;89(12):1897-904. doi: 10.1002/jnr.22659. Epub 2011 May 3.
8
Mitochondrial consumption of cytosolic ATP: not so fast.
FEBS Lett. 2011 May 6;585(9):1255-9. doi: 10.1016/j.febslet.2011.04.004. Epub 2011 Apr 7.
9
NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels.
PLoS One. 2011 Mar 31;6(3):e17963. doi: 10.1371/journal.pone.0017963.
10
Mitochondrial Ca2+ sequestration and precipitation revisited.
FEBS J. 2010 Sep;277(18):3637-51. doi: 10.1111/j.1742-4658.2010.07755.x. Epub 2010 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验