Suppr超能文献

在缺氧条件下,剩余的复合物 I 活性和双向复合物 II 运作通过 mtSLP 支持谷氨酸分解代谢。

Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia.

机构信息

Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary.

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.

出版信息

Sci Rep. 2024 Jan 19;14(1):1729. doi: 10.1038/s41598-024-51365-4.

Abstract

Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.

摘要

缺氧会阻止氧化磷酸化 (OXPHOS),导致线粒体基质中还原化合物的积累,从而阻碍脱氢酶的作用。通过实时同时测量分离线粒体中的氧浓度、NADH 自发荧光、线粒体膜电位和泛醌还原程度,我们证明在急性缺氧下,复合物 I 利用内源性醌氧化 NADH。在存在或不存在电子传递系统的特异性抑制剂的情况下,对缺氧期间提取的代谢物进行 C 代谢追踪或非靶向分析表明,由复合物 I 再生的 NAD 通过 2-氧戊二酸脱氢酶复合物 (2-oxoglutarate dehydrogenase Complex) 被还原为琥珀酰辅酶 A,支持线粒体底物水平磷酸化 (mtSLP),释放琥珀酸。复合物 II 在缺氧事件中双向运作,为复合物 I 提供醌,并将延胡索酸还原为琥珀酸。我们的结果强调了提供醌以氧化 NADH 的重要性,这有助于在没有 OXPHOS 的情况下维持谷氨酸分解代谢和 mtSLP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda4/10798963/174aaa8181fd/41598_2024_51365_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验