Suppr超能文献

线粒体底物水平磷酸化作为神经胶质母细胞瘤的能量来源:综述与假说。

Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis.

机构信息

1 Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.

2 Biology Department, Boston College, Chestnut Hill, MA, USA.

出版信息

ASN Neuro. 2018 Jan-Dec;10:1759091418818261. doi: 10.1177/1759091418818261.

Abstract

Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers. Ultrastructural and biochemical evidence shows that GBM cells exhibit mitochondrial abnormalities incompatible with energy production through oxidative phosphorylation (OxPhos). Under such conditions, the mitochondrial F0-F1 ATP synthase operates in reverse at the expense of ATP hydrolysis to maintain a moderate membrane potential. Moreover, expression of the dimeric M2 isoform of pyruvate kinase in GBM results in diminished ATP output, precluding a significant ATP production from glycolysis. If ATP synthesis through both glycolysis and OxPhos was impeded, then where would GBM cells obtain high-energy phosphates for growth and invasion? Literature is reviewed suggesting that the succinate-CoA ligase reaction in the tricarboxylic acid cycle can substantiate sufficient ATP through mitochondrial substrate-level phosphorylation (mSLP) to maintain GBM growth when OxPhos is impaired. Production of high-energy phosphates would be supported by glutaminolysis-a hallmark of GBM metabolism-through the sequential conversion of glutamine → glutamate → alpha-ketoglutarate → succinyl CoA → succinate. Equally important, provision of ATP through mSLP would maintain the adenine nucleotide translocase in forward mode, thus preventing the reverse-operating F0-F1 ATP synthase from depleting cytosolic ATP reserves. Because glucose and glutamine are the primary fuels driving the rapid growth of GBM and most tumors for that matter, simultaneous restriction of these two substrates or inhibition of mSLP should diminish cancer viability, growth, and invasion.

摘要

多形性胶质母细胞瘤(GBM)是最常见和恶性的原发性成人脑癌。超微结构和生化证据表明,GBM 细胞表现出与氧化磷酸化(OxPhos)不符的线粒体异常,无法进行能量产生。在这种情况下,线粒体 F0-F1 ATP 合酶以逆转为代价,通过 ATP 水解来维持适度的膜电位。此外,GBM 中丙酮酸激酶二聚体 M2 同工型的表达导致 ATP 输出减少,排除了糖酵解产生大量 ATP 的可能性。如果糖酵解和 OxPhos 两个途径的 ATP 合成都受到阻碍,那么 GBM 细胞将从哪里获得生长和侵袭所需的高能磷酸化合物呢?有文献综述表明,三羧酸循环中的琥珀酸-CoA 连接酶反应可以通过线粒体底物水平磷酸化(mSLP)为 OxPhos 受损时的 GBM 生长提供足够的 ATP。高能磷酸化合物的产生将通过谷氨酰胺分解代谢得到支持,这是 GBM 代谢的一个标志,通过谷氨酰胺→谷氨酸→α-酮戊二酸→琥珀酰 CoA→琥珀酸的顺序转化。同样重要的是,通过 mSLP 提供的 ATP 将维持腺嘌呤核苷酸转运蛋白处于正向模式,从而防止逆运转的 F0-F1 ATP 合酶耗尽细胞溶胶中的 ATP 储备。由于葡萄糖和谷氨酰胺是推动 GBM 及其大多数肿瘤快速生长的主要燃料,因此同时限制这两种底物或抑制 mSLP 应该会降低癌症的活力、生长和侵袭。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0b8/6311572/a8d60ae7a972/10.1177_1759091418818261-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验