Suppr超能文献

基于多个非负三角和,使用多元角分布对蛋白质和环状基因组中的角度进行建模。

Modeling angles in proteins and circular genomes using multivariate angular distributions based on multiple nonnegative trigonometric sums.

作者信息

Fernández-Durán Juan José, Gregorio-Domínguez María Mercedes

出版信息

Stat Appl Genet Mol Biol. 2014 Feb;13(1):1-18. doi: 10.1515/sagmb-2012-0012.

Abstract

Fernández-Durán, J. J. (2004): "Circular distributions based on nonnegative trigonometric sums," Biometrics, 60, 499-503, developed a family of univariate circular distributions based on nonnegative trigonometric sums. In this work, we extend this family of distributions to the multivariate case by using multiple nonnegative trigonometric sums to model the joint distribution of a vector of angular random variables. Practical examples of vectors of angular random variables include the wind direction at different monitoring stations, the directions taken by an animal on different occasions, the times at which a person performs different daily activities, and the dihedral angles of a protein molecule. We apply the proposed new family of multivariate distributions to three real data-sets: two for the study of protein structure and one for genomics. The first is related to the study of a bivariate vector of dihedral angles in proteins. In the second real data-set, we compare the fit of the proposed multivariate model with the bivariate generalized von Mises model of [Shieh, G. S., S. Zheng, R. A. Johnson, Y.-F. Chang, K. Shimizu, C.-C. Wang, and S.-L. Tang (2011): "Modeling and comparing the organization of circular genomes," Bioinformatics, 27(7), 912-918.] in a problem related to orthologous genes in pairs of circular genomes. The third real data-set consists of observed values of three dihedral angles in γ-turns in a protein and serves as an example of trivariate angular data. In addition, a simulation algorithm is presented to generate realizations from the proposed multivariate angular distribution.

摘要

费尔南德斯 - 杜兰,J. J.(2004年):《基于非负三角和的圆形分布》,《生物统计学》,第60卷,第499 - 503页,基于非负三角和开发了一族单变量圆形分布。在这项工作中,我们通过使用多个非负三角和来对角度随机变量向量的联合分布进行建模,将这族分布扩展到多变量情形。角度随机变量向量的实际例子包括不同监测站的风向、动物在不同场合所取的方向、一个人进行不同日常活动的时间以及蛋白质分子的二面角。我们将所提出的新的多变量分布族应用于三个真实数据集:两个用于蛋白质结构研究,一个用于基因组学。第一个与蛋白质中二面角的双变量向量研究相关。在第二个真实数据集中,我们在一个与环状基因组对中的直系同源基因相关的问题中,将所提出的多变量模型的拟合度与[谢,G. S.,郑,S.,约翰逊,R. A.,张,Y. - F.,清水,K.,王,C. - C.,唐,S. - L.(2011年):《环状基因组的组织建模与比较》,《生物信息学》,第27卷第7期,第912 - 918页]的双变量广义冯·米塞斯模型进行比较。第三个真实数据集由一种蛋白质中γ转角处三个二面角的观测值组成,作为三变量角度数据的一个例子。此外,还提出了一种模拟算法来生成所提出的多变量角度分布的实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验