Suppr超能文献

具有应用于大城市每日高峰时段水平的圆形分布的多模态指数族。

Multimodal exponential families of circular distributions with application to daily peak hours of level in a large city.

作者信息

Kim Sungsu, SenGupta Ashis

机构信息

Department of mathematics, University of Louisiana at Lafayette, Lafayette, LA, USA.

Applied statistics unit, Indian Statistical Institute, Kolkata, India.

出版信息

J Appl Stat. 2020 Jul 23;48(16):3193-3207. doi: 10.1080/02664763.2020.1796938. eCollection 2021.

Abstract

In this paper, we propose two multimodal circular distributions which are suitable for modeling circular data sets with two or more modes. Both distributions belong to the regular exponential family of distributions and are considered as extensions of the von Mises distribution. Hence, they possess the highly desirable properties, such as the existence of non-trivial sufficient statistics and optimal inferences for their parameters. Fine particulates (PM2.5) are generally emitted from activities such as industrial and residential combustion and from vehicle exhaust. We illustrate the utility of our proposed models using a real data set consisting of fine particulates (PM2.5) pollutant levels in Houston region during Fall season in 2019. Our results provide a strong evidence that its diurnal pattern exhibits four modes; two peaks during morning and evening rush hours and two peaks in between.

摘要

在本文中,我们提出了两种多峰圆形分布,它们适用于对具有两个或更多模式的圆形数据集进行建模。这两种分布都属于正则指数分布族,并被视为冯·米塞斯分布的扩展。因此,它们具有非常理想的性质,例如存在非平凡的充分统计量以及对其参数的最优推断。细颗粒物(PM2.5)通常来自工业和居民燃烧等活动以及车辆尾气排放。我们使用一个由2019年秋季休斯顿地区细颗粒物(PM2.5)污染物水平组成的真实数据集来说明我们提出的模型的效用。我们的结果提供了强有力的证据,表明其日变化模式呈现出四种模式;在早晚高峰时段各有两个峰值,中间还有两个峰值。

相似文献

8
Spatial-temporal patterns of PM concentrations for 338 Chinese cities.中国 338 个城市 PM 浓度的时空分布模式。
Sci Total Environ. 2018 Aug 1;631-632:524-533. doi: 10.1016/j.scitotenv.2018.03.057. Epub 2018 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验