Chagneau Pierrette, Mortier Frédéric, Picard Nicolas, Bacro Jean-Noël
CIRAD, UR Dynamique des forêts naturelles, 34 398 Montpellier, France.
Biometrics. 2011 Mar;67(1):97-105. doi: 10.1111/j.1541-0420.2010.01415.x.
As most georeferenced data sets are multivariate and concern variables of different types, spatial mapping methods must be able to deal with such data. The main difficulties are the prediction of non-Gaussian variables and the modeling of the dependence between processes. The aim of this article is to present a new hierarchical Bayesian approach that permits simultaneous modeling of dependent Gaussian, count, and ordinal spatial fields. This approach is based on spatial generalized linear mixed models. We use a moving average approach to model the spatial dependence between the processes. The method is first validated through a simulation study. We show that the multivariate model has better predictive abilities than the univariate one. Then the multivariate spatial hierarchical model is applied to a real data set collected in French Guiana to predict topsoil patterns.
由于大多数地理参考数据集是多变量的,且涉及不同类型的变量,空间映射方法必须能够处理此类数据。主要困难在于非高斯变量的预测以及过程间依赖性的建模。本文的目的是提出一种新的分层贝叶斯方法,该方法允许对相关的高斯、计数和有序空间场进行同时建模。此方法基于空间广义线性混合模型。我们使用移动平均方法对过程间的空间依赖性进行建模。该方法首先通过模拟研究进行验证。我们表明,多变量模型比单变量模型具有更好的预测能力。然后将多变量空间分层模型应用于在法属圭亚那收集的真实数据集,以预测表层土壤模式。