Suppr超能文献

具有非齐次狄利克雷数据的自适应有限元方法的收敛性和拟最优性。

Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data.

作者信息

Feischl M, Page M, Praetorius D

机构信息

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

出版信息

J Comput Appl Math. 2014 Jan 1;255(100):481-501. doi: 10.1016/j.cam.2013.06.009.

Abstract

We consider the solution of a second order elliptic PDE with inhomogeneous Dirichlet data by means of adaptive lowest-order FEM. As is usually done in practice, the given Dirichlet data are discretized by nodal interpolation. As model example serves the Poisson equation with mixed Dirichlet-Neumann boundary conditions. For error estimation, we use an edge-based residual error estimator which replaces the volume residual contributions by edge oscillations. For 2D, we prove convergence of the adaptive algorithm even with optimal convergence rate. For 2D and 3D, we show convergence if the nodal interpolation operator is replaced by the [Formula: see text]-projection or the Scott-Zhang quasi-interpolation operator. As a byproduct of the proof, we show that the Scott-Zhang operator converges pointwise to a limiting operator as the mesh is locally refined. This property might be of independent interest besides the current application. Finally, numerical experiments conclude the work.

摘要

我们通过自适应最低阶有限元方法来考虑具有非齐次狄利克雷数据的二阶椭圆型偏微分方程的解。如同实际中通常所做的那样,给定的狄利克雷数据通过节点插值进行离散化。作为模型示例,采用具有混合狄利克雷 - 诺伊曼边界条件的泊松方程。对于误差估计,我们使用基于边的残差误差估计器,它用边振荡来替代体积残差贡献。对于二维情况,我们证明了自适应算法的收敛性,甚至具有最优收敛速率。对于二维和三维情况,如果将节点插值算子替换为[公式:见文本]投影或斯科特 - 张拟插值算子,我们证明了收敛性。作为证明的一个副产品,我们表明随着网格局部细化,斯科特 - 张算子逐点收敛到一个极限算子。除了当前的应用外,该性质可能具有独立的研究价值。最后,数值实验完成了这项工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c91e/3798050/5f39c7af6310/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验