Wulff Claudia, Evans Chris
Department of Mathematics, University of Surrey, Guildford, GU2 7XH UK.
Numer Math (Heidelb). 2016;134(2):413-440. doi: 10.1007/s00211-015-0776-8. Epub 2015 Nov 17.
We study semilinear evolution equations [Formula: see text] posed on a Hilbert space [Formula: see text], where is normal and generates a strongly continuous semigroup, is a smooth nonlinearity from [Formula: see text] to itself, and [Formula: see text], [Formula: see text], [Formula: see text]. In particular the one-dimensional semilinear wave equation and nonlinear Schrödinger equation with periodic, Neumann and Dirichlet boundary conditions fit into this framework. We discretize the evolution equation with an A-stable Runge-Kutta method in time, retaining continuous space, and prove convergence of order [Formula: see text] for non-smooth initial data [Formula: see text], where [Formula: see text], for a method of classical order , extending a result by Brenner and Thomée for linear systems. Our approach is to project the semiflow and numerical method to spectral Galerkin approximations, and to balance the projection error with the error of the time discretization of the projected system. Numerical experiments suggest that our estimates are sharp.
我们研究在希尔伯特空间(\mathcal{H})上提出的半线性发展方程([公式:见正文]),其中(A)是正规的且生成一个强连续半群,(f)是从(\mathcal{H})到其自身的光滑非线性函数,且([公式:见正文]),([公式:见正文]),([公式:见正文])。特别地,具有周期、诺伊曼和狄利克雷边界条件的一维半线性波动方程和非线性薛定谔方程符合此框架。我们用一个(A)稳定的龙格 - 库塔方法在时间上离散化发展方程,保持空间连续,并证明对于非光滑初始数据([公式:见正文]),收敛阶为([公式:见正文]),其中([公式:见正文]),对于经典阶为([公式:见正文])的方法,扩展了布伦纳和托梅对于线性系统的一个结果。我们的方法是将半流和数值方法投影到谱伽辽金近似上,并将投影误差与投影系统时间离散化的误差相平衡。数值实验表明我们的估计是精确的。