Suppr超能文献

通过 CSF 传输的多腔室多孔弹性模型探索内镜脑室造瘘术治疗脑积水的效果:计算视角。

Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: a computational perspective.

机构信息

Institute of Biomedical Engineering and Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

Oxyntix Ltd., Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS One. 2013 Dec 31;8(12):e84577. doi: 10.1371/journal.pone.0084577. eCollection 2013.

Abstract

This study proposes the implementation of a Multiple-Network Poroelastic Theory (MPET) model coupled with finite-volume computational fluid dynamics for the purpose of studying, in detail, the effects of obstructing CSF transport within an anatomically accurate cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cerebral blood, in an integral and comprehensive manner. A key novelty in the model is the amalgamation of anatomically accurate choroid plexuses with their feeding arteries and a simple relationship relaxing the constraint of a unique permeability for the CSF compartment. This was done in order to account for the Aquaporin-4-mediated swelling characteristics. The aim of this varying permeability compartment was to bring to light a feedback mechanism that could counteract the effects of ventricular dilation and subsequent elevations of CSF pressure through the efflux of excess CSF into the blood system. This model is used to demonstrate the impact of aqueductal stenosis and fourth ventricle outlet obstruction (FVOO). The implications of treating such a clinical condition with the aid of endoscopic third (ETV) and endoscopic fourth (EFV) ventriculostomy are considered. We observed peak CSF velocities in the aqueduct of the order of 15.6 cm/s in the healthy case, 45.4 cm/s and 72.8 cm/s for the mild and severe cases respectively. The application of ETV reduced the aqueductal velocity to levels around 16-17 cm/s. Ventricular displacement, CSF pressure, wall shear stress (WSS) and pressure difference between lateral and fourth ventricles (ΔP) increased with applied stenosis, and subsequently dropped to nominal levels with the application of ETV. The greatest reversal of the effects of atresia come by opting for ETV rather than the more complicated procedure of EFV.

摘要

本研究提出了实施多网络多孔弹性理论 (MPET) 模型与有限体积计算流体动力学相结合的方法,目的是详细研究在解剖学上准确的脑环境中阻碍 CSF 转运的影响。MPET 表示允许以整体和全面的方式研究 CSF、脑实质和脑血流之间的流体转运。该模型的一个关键新颖之处在于将解剖学上准确的脉络丛与其供养动脉结合在一起,并采用一种简单的关系来放松 CSF 隔室独特渗透性的约束。这样做是为了考虑水通道蛋白-4 介导的肿胀特性。这种可变渗透性隔室的目的是揭示一种反馈机制,该机制可以通过将多余的 CSF 排出到血液系统中来抵消脑室扩张和随后 CSF 压力升高的影响。该模型用于演示导水管狭窄和第四脑室出口梗阻 (FVOO) 的影响。考虑了借助内镜第三脑室 (ETV) 和内镜第四脑室 (EFV) 脑室造口术治疗这种临床情况的影响。我们观察到健康情况下,导水管中 CSF 速度峰值约为 15.6cm/s,轻度和重度情况下分别为 45.4cm/s 和 72.8cm/s。ETV 的应用将导水管速度降低到 16-17cm/s 左右。心室位移、CSF 压力、壁面切应力 (WSS) 和侧脑室与第四脑室之间的压差 (ΔP) 随着施加的狭窄而增加,随后随着 ETV 的应用而降至标称水平。通过选择 ETV 而不是更复杂的 EFV 手术,能够最大程度地逆转闭锁的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd9a/3877339/337c1afe4c10/pone.0084577.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验