Suppr超能文献

NodePM:一种使用概率技术的能源消耗远程监测警报系统。

NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques.

作者信息

Filho Geraldo P R, Ueyama Jó, Villas Leandro A, Pinto Alex R, Gonçalves Vinícius P, Pessin Gustavo, Pazzi Richard W, Braun Torsten

机构信息

Institute of Mathematics and Computer Science, University of São Paulo, São Carlos-SP 13566-590, Brazil.

出版信息

Sensors (Basel). 2014 Jan 6;14(1):848-67. doi: 10.3390/s140100848.

Abstract

In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

摘要

在本文中,我们提出了一种名为新奇性检测功率计(NodePM)的智能方法,用于检测智能电网监控的电子设备中的新奇性。考虑到基于马尔可夫链模型计算的每个被监控设备的熵,该方法通过机器学习算法识别新奇性。为此,NodePM被集成到一个由无线传感器网络(WSN)组成的能耗远程监控平台中。因此,应该强调的是,实验是在与许多相关工作不同的真实环境中进行的,而这些相关工作是在模拟环境中进行评估的。从这个意义上说,结果表明NodePM将我们监控的设备的功耗降低了13.7%。此外,与文献中的一种方法相比,NodePM在检测新奇性方面具有更高的效率,在所有进行的评估中的不同场景下都超过了该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be1/3926589/0c9946d8aabc/sensors-14-00848f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验