文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

边缘计算中的联邦学习:系统综述。

Federated Learning in Edge Computing: A Systematic Survey.

机构信息

Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.

出版信息

Sensors (Basel). 2022 Jan 7;22(2):450. doi: 10.3390/s22020450.


DOI:10.3390/s22020450
PMID:35062410
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8780479/
Abstract

Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services closer to data sources. EC combined with Deep Learning (DL) is a promising technology and is widely used in several applications. However, in conventional DL architectures with EC enabled, data producers must frequently send and share data with third parties, edge or cloud servers, to train their models. This architecture is often impractical due to the high bandwidth requirements, legalization, and privacy vulnerabilities. The Federated Learning (FL) concept has recently emerged as a promising solution for mitigating the problems of unwanted bandwidth loss, data privacy, and legalization. FL can co-train models across distributed clients, such as mobile phones, automobiles, hospitals, and more, through a centralized server, while maintaining data localization. FL can therefore be viewed as a stimulating factor in the EC paradigm as it enables collaborative learning and model optimization. Although the existing surveys have taken into account applications of FL in EC environments, there has not been any systematic survey discussing FL implementation and challenges in the EC paradigm. This paper aims to provide a systematic survey of the literature on the implementation of FL in EC environments with a taxonomy to identify advanced solutions and other open problems. In this survey, we review the fundamentals of EC and FL, then we review the existing related works in FL in EC. Furthermore, we describe the protocols, architecture, framework, and hardware requirements for FL implementation in the EC environment. Moreover, we discuss the applications, challenges, and related existing solutions in the edge FL. Finally, we detail two relevant case studies of applying FL in EC, and we identify open issues and potential directions for future research. We believe this survey will help researchers better understand the connection between FL and EC enabling technologies and concepts.

摘要

边缘计算 (EC) 是一种将云计算 (CC) 服务扩展到更接近数据源的新技术架构。EC 与深度学习 (DL) 相结合是一项很有前途的技术,广泛应用于多个应用中。然而,在传统的具有 EC 功能的 DL 架构中,数据生产者必须频繁地将数据发送和共享给第三方,如边缘或云服务器,以训练他们的模型。由于高带宽要求、法律和隐私漏洞,这种架构通常是不切实际的。联邦学习 (FL) 概念最近作为一种有前途的解决方案出现,可以减轻不必要的带宽损失、数据隐私和合法化问题。FL 可以通过集中式服务器在分布式客户端(如手机、汽车、医院等)之间共同训练模型,同时保持数据本地化。因此,FL 可以被视为 EC 范例中的一个刺激因素,因为它可以实现协作学习和模型优化。尽管现有的调查已经考虑了 FL 在 EC 环境中的应用,但没有任何系统的调查讨论了 FL 在 EC 范例中的实现和挑战。本文旨在提供一个关于在 EC 环境中实现 FL 的文献的系统调查,通过分类法来识别高级解决方案和其他开放问题。在这项调查中,我们回顾了 EC 和 FL 的基本原理,然后回顾了现有的 EC 中关于 FL 的相关工作。此外,我们描述了在 EC 环境中实现 FL 的协议、架构、框架和硬件要求。此外,我们讨论了边缘 FL 的应用、挑战和相关的现有解决方案。最后,我们详细介绍了两个在 EC 中应用 FL 的相关案例研究,并确定了开放问题和未来研究的潜在方向。我们相信,这项调查将帮助研究人员更好地理解 FL 与 EC 使能技术和概念之间的联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/fdea0452154b/sensors-22-00450-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/ce66420dc5bb/sensors-22-00450-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/2324efb4d653/sensors-22-00450-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/16e5f3a15aa3/sensors-22-00450-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/038c5e4894cf/sensors-22-00450-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/0e0f004030f5/sensors-22-00450-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/233b4a36de50/sensors-22-00450-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/da6d27bf5799/sensors-22-00450-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/28b3180eeba2/sensors-22-00450-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/d7de8ec6dd55/sensors-22-00450-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/4eb136d464df/sensors-22-00450-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/bd1115619cbc/sensors-22-00450-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/fdea0452154b/sensors-22-00450-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/ce66420dc5bb/sensors-22-00450-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/2324efb4d653/sensors-22-00450-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/16e5f3a15aa3/sensors-22-00450-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/038c5e4894cf/sensors-22-00450-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/0e0f004030f5/sensors-22-00450-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/233b4a36de50/sensors-22-00450-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/da6d27bf5799/sensors-22-00450-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/28b3180eeba2/sensors-22-00450-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/d7de8ec6dd55/sensors-22-00450-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/4eb136d464df/sensors-22-00450-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/bd1115619cbc/sensors-22-00450-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400b/8780479/fdea0452154b/sensors-22-00450-g012.jpg

相似文献

[1]
Federated Learning in Edge Computing: A Systematic Survey.

Sensors (Basel). 2022-1-7

[2]
Federated learning for 6G-enabled secure communication systems: a comprehensive survey.

Artif Intell Rev. 2023-3-12

[3]
Federated learning in cloud-edge collaborative architecture: key technologies, applications and challenges.

J Cloud Comput (Heidelb). 2022

[4]
Securing federated learning with blockchain: a systematic literature review.

Artif Intell Rev. 2023

[5]
Blockchain Empowered Federated Learning Ecosystem for Securing Consumer IoT Features Analysis.

Sensors (Basel). 2022-9-8

[6]
An Overview of Fog Computing and Edge Computing Security and Privacy Issues.

Sensors (Basel). 2021-12-9

[7]
Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications.

IEEE Access. 2020

[8]
A survey of security, privacy and trust issues in vehicular computation offloading and their solutions using blockchain.

Open Res Eur. 2023-10-25

[9]
A Critical Evaluation of Privacy and Security Threats in Federated Learning.

Sensors (Basel). 2020-12-15

[10]
Distributed Detection of Malicious Android Apps While Preserving Privacy Using Federated Learning.

Sensors (Basel). 2023-2-15

引用本文的文献

[1]
Edge computing with federated learning for early detection of citric acid overdose and adjustment of regional citrate anticoagulation.

BMC Med Inform Decis Mak. 2025-8-30

[2]
Edge learning applications in the prediction and classification of combined hepatocellular-cholangiocarcinoma: A comprehensive narrative review.

World J Clin Oncol. 2025-7-24

[3]
Health is beyond genetics: on the integration of lifestyle and environment in real-time for hyper-personalized medicine.

Front Public Health. 2025-1-7

[4]
Cloud-Edge-End Collaborative Federated Learning: Enhancing Model Accuracy and Privacy in Non-IID Environments.

Sensors (Basel). 2024-12-16

[5]
Decades in the Making: The Evolution of Digital Health Research Infrastructure Through Synthetic Data, Common Data Models, and Federated Learning.

J Med Internet Res. 2024-12-20

[6]
Federated learning: Overview, strategies, applications, tools and future directions.

Heliyon. 2024-9-20

[7]
FL-DSFA: Securing RPL-Based IoT Networks against Selective Forwarding Attacks Using Federated Learning.

Sensors (Basel). 2024-9-8

[8]
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.

Ophthalmol Glaucoma. 2025

[9]
Federated Multi-Label Learning (FMLL): Innovative Method for Classification Tasks in Animal Science.

Animals (Basel). 2024-7-9

[10]
Advancing Federated Learning through Verifiable Computations and Homomorphic Encryption.

Entropy (Basel). 2023-11-16

本文引用的文献

[1]
Communication-efficient federated learning.

Proc Natl Acad Sci U S A. 2021-4-27

[2]
Federated learning for COVID-19 screening from Chest X-ray images.

Appl Soft Comput. 2021-7

[3]
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing.

Sensors (Basel). 2021-2-28

[4]
Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis.

Sensors (Basel). 2020-12-29

[5]
Federated Learning for Healthcare Informatics.

J Healthc Inform Res. 2021

[6]
Federated Learning in Smart City Sensing: Challenges and Opportunities.

Sensors (Basel). 2020-10-31

[7]
Federated Learning on Clinical Benchmark Data: Performance Assessment.

J Med Internet Res. 2020-10-26

[8]
The future of digital health with federated learning.

NPJ Digit Med. 2020-9-14

[9]
Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications.

IEEE Access. 2020

[10]
Federated Learning for Vehicular Internet of Things: Recent Advances and Open Issues.

IEEE Comput Graph Appl. 2020-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索