Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.
Sensors (Basel). 2022 Jan 7;22(2):450. doi: 10.3390/s22020450.
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services closer to data sources. EC combined with Deep Learning (DL) is a promising technology and is widely used in several applications. However, in conventional DL architectures with EC enabled, data producers must frequently send and share data with third parties, edge or cloud servers, to train their models. This architecture is often impractical due to the high bandwidth requirements, legalization, and privacy vulnerabilities. The Federated Learning (FL) concept has recently emerged as a promising solution for mitigating the problems of unwanted bandwidth loss, data privacy, and legalization. FL can co-train models across distributed clients, such as mobile phones, automobiles, hospitals, and more, through a centralized server, while maintaining data localization. FL can therefore be viewed as a stimulating factor in the EC paradigm as it enables collaborative learning and model optimization. Although the existing surveys have taken into account applications of FL in EC environments, there has not been any systematic survey discussing FL implementation and challenges in the EC paradigm. This paper aims to provide a systematic survey of the literature on the implementation of FL in EC environments with a taxonomy to identify advanced solutions and other open problems. In this survey, we review the fundamentals of EC and FL, then we review the existing related works in FL in EC. Furthermore, we describe the protocols, architecture, framework, and hardware requirements for FL implementation in the EC environment. Moreover, we discuss the applications, challenges, and related existing solutions in the edge FL. Finally, we detail two relevant case studies of applying FL in EC, and we identify open issues and potential directions for future research. We believe this survey will help researchers better understand the connection between FL and EC enabling technologies and concepts.
边缘计算 (EC) 是一种将云计算 (CC) 服务扩展到更接近数据源的新技术架构。EC 与深度学习 (DL) 相结合是一项很有前途的技术,广泛应用于多个应用中。然而,在传统的具有 EC 功能的 DL 架构中,数据生产者必须频繁地将数据发送和共享给第三方,如边缘或云服务器,以训练他们的模型。由于高带宽要求、法律和隐私漏洞,这种架构通常是不切实际的。联邦学习 (FL) 概念最近作为一种有前途的解决方案出现,可以减轻不必要的带宽损失、数据隐私和合法化问题。FL 可以通过集中式服务器在分布式客户端(如手机、汽车、医院等)之间共同训练模型,同时保持数据本地化。因此,FL 可以被视为 EC 范例中的一个刺激因素,因为它可以实现协作学习和模型优化。尽管现有的调查已经考虑了 FL 在 EC 环境中的应用,但没有任何系统的调查讨论了 FL 在 EC 范例中的实现和挑战。本文旨在提供一个关于在 EC 环境中实现 FL 的文献的系统调查,通过分类法来识别高级解决方案和其他开放问题。在这项调查中,我们回顾了 EC 和 FL 的基本原理,然后回顾了现有的 EC 中关于 FL 的相关工作。此外,我们描述了在 EC 环境中实现 FL 的协议、架构、框架和硬件要求。此外,我们讨论了边缘 FL 的应用、挑战和相关的现有解决方案。最后,我们详细介绍了两个在 EC 中应用 FL 的相关案例研究,并确定了开放问题和未来研究的潜在方向。我们相信,这项调查将帮助研究人员更好地理解 FL 与 EC 使能技术和概念之间的联系。
Sensors (Basel). 2022-1-7
Artif Intell Rev. 2023-3-12
J Cloud Comput (Heidelb). 2022
Artif Intell Rev. 2023
Sensors (Basel). 2022-9-8
Sensors (Basel). 2021-12-9
Sensors (Basel). 2020-12-15
Sensors (Basel). 2023-2-15
BMC Med Inform Decis Mak. 2025-8-30
Ophthalmol Glaucoma. 2025
Animals (Basel). 2024-7-9
Entropy (Basel). 2023-11-16
Proc Natl Acad Sci U S A. 2021-4-27
Appl Soft Comput. 2021-7
Sensors (Basel). 2021-2-28
Sensors (Basel). 2020-12-29
J Healthc Inform Res. 2021
Sensors (Basel). 2020-10-31
J Med Internet Res. 2020-10-26
NPJ Digit Med. 2020-9-14
IEEE Comput Graph Appl. 2020-5-5