Suppr超能文献

采用动态测量协议与先进数据处理相结合的方法,通过电位多传感器系统解析化学性质相似的分析物混合物。

A combination of dynamic measurement protocol and advanced data treatment to resolve the mixtures of chemically similar analytes with potentiometric multisensor system.

作者信息

Kirsanov Dmitry, Cetó Xavier, Khaydukova Maria, Blinova Yulia, del Valle Manel, Babain Vasily, Legin Andrey

机构信息

Chemistry Department, St. Petersburg State University, Universitetskaya nab. 7/9, Mendeleev Center, 199034 St. Petersburg, Russia; Laboratory of Artificial Sensor Systems, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy pr. 49, St. Petersburg 197101, Russia.

Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, Bellaterra, Barcelona 08193, Spain.

出版信息

Talanta. 2014 Feb;119:226-31. doi: 10.1016/j.talanta.2013.11.003. Epub 2013 Nov 13.

Abstract

Data processing techniques and measuring protocol are very important parts of the multisensor systems methodology. Complex analytical tasks like resolving the mixtures of two components with very similar chemical properties require special attention. We report on the application of non-linear (artificial neural networks, ANNs) and linear (projections on latent structures, PLS) regression techniques to the data obtained from the flow cell with potentiometric multisensor detection of neighouring lanthanides in the Periodic System of the elements (samarium, europium and gadolinium). Quantification of individual components in mixtures is possible with reasonable precision if dynamic components of the response are incorporated thanks to the use of an automated sequential injection analysis system. The average absolute error in prediction of lanthanides with PLS was around 1 × 10(-4)mol/L, while the use of ANNs allows the lowering of prediction errors down to 2 × 10(-5)mol/L in certain cases. The suggested protocol seems to be useful for other analytical applications where simultaneous determination of chemically similar analytes in mixtures is required.

摘要

数据处理技术和测量方案是多传感器系统方法学的非常重要的组成部分。诸如解析具有非常相似化学性质的两种成分的混合物这类复杂的分析任务需要特别关注。我们报告了非线性(人工神经网络,ANN)和线性(潜在结构投影,PLS)回归技术在通过电位多传感器检测元素周期系中相邻镧系元素(钐、铕和钆)而从流通池中获得的数据上的应用。如果由于使用了自动顺序注射分析系统而纳入了响应的动态成分,那么混合物中各个成分的定量分析就能够以合理的精度进行。使用PLS预测镧系元素时的平均绝对误差约为1×10⁻⁴mol/L,而在某些情况下使用ANN可将预测误差降低至2×10⁻⁵mol/L。所建议的方案似乎对其他需要同时测定混合物中化学性质相似的分析物的分析应用很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验