Suppr超能文献

在新的鱿鱼宿主 Euprymna tasmanica 中连续传代 500 代的费氏弧菌的生态多样化。

Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica.

机构信息

Department of Ecology, Evolution, & Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN, 55108, USA,

出版信息

Microb Ecol. 2014 Apr;67(3):700-21. doi: 10.1007/s00248-013-0356-3. Epub 2014 Jan 9.

Abstract

Vibrio fischeri isolated from Euprymna scolopes (Cephalopoda: Sepiolidae) was used to create 24 lines that were serially passaged through the non-native host Euprymna tasmanica for 500 generations. These derived lines were characterized for biofilm formation, swarming motility, carbon source utilization, and in vitro bioluminescence. Phenotypic assays were compared between "ES" (E. scolopes) and "ET" (E. tasmanica) V. fischeri wild isolates to determine if convergent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was observed in utilization of most carbon sources examined. Convergent evolution was evident in motility, biofilm formation, and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold increase in brightness) was collectively evident in the derived lines relative to the ancestor. However, dramatic changes in other properties--time points and cell densities of first light emission and maximal light output and emergence of a lag phase in growth curves of derived lines--suggest that increased light intensity per se was not the only important factor. Convergent evolution implies that gnotobiotic squid light organs subject colonizing V. fischeri to similar selection pressures. Adaptation to novel hosts appears to involve flexible microbial metabolism, establishment of biofilm and swarmer V. fischeri ecotypes, and complex changes in bioluminescence. Our data demonstrate that numerous alternate fitness optima or peaks are available to V. fischeri in host adaptive landscapes, where novel host squids serve as habitat islands. Thus, V. fischeri founder flushes occur during the initiation of light organ colonization that ultimately trigger founder effect diversification.

摘要

从文昌鱼(头足纲:枪乌贼科)中分离出的 Fischeri 弧菌被用于创建 24 条连续通过非本地宿主文昌鱼 Tasmanica 传代 500 代的衍生系。这些衍生系的生物膜形成、群集运动、碳源利用和体外生物发光特性进行了表征。在 ES(E. scolopes)和 ET(E. tasmanica)V. fischeri 野生分离株之间比较表型测定,以确定 ET V. fischeri 进化系之间是否出现趋同进化。在大多数检查的碳源利用方面观察到生态多样化。在运动、生物膜形成和选择碳源方面观察到趋同进化,在 V. fischeri 中表现出超多态性使用。生物发光(亮度增加 2.5 倍)在衍生系中相对于祖先表现出明显的趋同。然而,其他特性的剧烈变化——首次发光和最大光输出的时间点和细胞密度以及衍生系生长曲线中出现的滞后期——表明光强度本身并不是唯一的重要因素。趋同进化表明,无菌鱿鱼光器官使定植的 Fischeri 弧菌受到类似的选择压力。对新宿主的适应似乎涉及微生物代谢的灵活性、生物膜和游动 Fischeri 弧菌生态型的建立,以及生物发光的复杂变化。我们的数据表明,在宿主适应性景观中,Fischeri 弧菌有许多替代的适应度最优值或峰值,其中新型宿主鱿鱼作为栖息地岛屿。因此,在光器官定植开始时会发生 Fischeri 弧菌的奠基者冲洗,最终引发奠基者效应多样化。

相似文献

1
Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica.
Microb Ecol. 2014 Apr;67(3):700-21. doi: 10.1007/s00248-013-0356-3. Epub 2014 Jan 9.
3
Adaptation to pH stress by can affect its symbiosis with the Hawaiian bobtail squid ().
Microbiology (Reading). 2020 Mar;166(3):262-277. doi: 10.1099/mic.0.000884.
4
Symbiont evolution during the free-living phase can improve host colonization.
Microbiology (Reading). 2019 Feb;165(2):174-187. doi: 10.1099/mic.0.000756. Epub 2019 Jan 16.
6
Intraspecific Competition Impacts Vibrio fischeri Strain Diversity during Initial Colonization of the Squid Light Organ.
Appl Environ Microbiol. 2016 May 2;82(10):3082-91. doi: 10.1128/AEM.04143-15. Print 2016 May 15.
9
Gene-swapping mediates host specificity among symbiotic bacteria in a beneficial symbiosis.
PLoS One. 2014 Jul 11;9(7):e101691. doi: 10.1371/journal.pone.0101691. eCollection 2014.

引用本文的文献

1
as a comparative model host for light organ symbiosis.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0000125. doi: 10.1128/aem.00001-25. Epub 2025 Jul 10.
2
Host-Associated Biofilms: and Other Symbiotic Bacteria Within the Vibrionaceae.
Microorganisms. 2025 May 27;13(6):1223. doi: 10.3390/microorganisms13061223.
3
as a comparative model host for light organ symbiosis.
bioRxiv. 2025 May 15:2025.01.10.632448. doi: 10.1101/2025.01.10.632448.
4
Genetic Variation in the Atlantic Bobtail Squid-Vibrio Symbiosis From the Galician Rías.
Mol Ecol. 2025 Jan;34(1):e17596. doi: 10.1111/mec.17596. Epub 2024 Dec 3.
5
Fitness trade-offs and the origins of endosymbiosis.
PLoS Biol. 2024 Apr 12;22(4):e3002580. doi: 10.1371/journal.pbio.3002580. eCollection 2024 Apr.
6
Cephalopod-omics: Emerging Fields and Technologies in Cephalopod Biology.
Integr Comp Biol. 2023 Dec 29;63(6):1226-1239. doi: 10.1093/icb/icad087.
7
Emerging Research Topics in the Vibrionaceae and the Squid- Symbiosis.
Microorganisms. 2022 Sep 30;10(10):1946. doi: 10.3390/microorganisms10101946.
8
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host.
Nat Rev Microbiol. 2021 Oct;19(10):654-665. doi: 10.1038/s41579-021-00557-0. Epub 2021 Jun 4.
10
Adaptation to pH stress by can affect its symbiosis with the Hawaiian bobtail squid ().
Microbiology (Reading). 2020 Mar;166(3):262-277. doi: 10.1099/mic.0.000884.

本文引用的文献

1
Studies of Adaptive Radiation Using Model Microbial Systems.
Am Nat. 2000 Oct;156(S4):S35-S44. doi: 10.1086/303414.
2
CHARACTER CHANGE, SPECIATION, AND THE HIGHER TAXA.
Evolution. 1982 May;36(3):427-443. doi: 10.1111/j.1558-5646.1982.tb05065.x.
3
Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae.
Microbiology (Reading). 2013 Apr;159(Pt 4):792-802. doi: 10.1099/mic.0.064865-0. Epub 2013 Feb 21.
4
Predation response of Vibrio fischeri biofilms to bacterivorus protists.
Appl Environ Microbiol. 2013 Jan;79(2):553-8. doi: 10.1128/AEM.02710-12. Epub 2012 Nov 9.
5
LuxU connects quorum sensing to biofilm formation in Vibrio fischeri.
Mol Microbiol. 2012 Nov;86(4):954-70. doi: 10.1111/mmi.12035. Epub 2012 Oct 5.
6
Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1878-87. doi: 10.1073/pnas.1203287109. Epub 2012 Jun 13.
7
A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP.
J Bacteriol. 2012 Sep;194(17):4485-93. doi: 10.1128/JB.00379-12. Epub 2012 Jun 1.
9
Shedding light on bioluminescence regulation in Vibrio fischeri.
Mol Microbiol. 2012 Jun;84(5):795-806. doi: 10.1111/j.1365-2958.2012.08065.x. Epub 2012 May 2.
10
Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization.
FEMS Microbiol Ecol. 2012 Sep;81(3):562-73. doi: 10.1111/j.1574-6941.2012.01386.x. Epub 2012 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验