Suppr超能文献

顺序脉冲式流体输送以在可扩展的微流控腔室阵列内建立可溶性梯度。

Sequentially pulsed fluid delivery to establish soluble gradients within a scalable microfluidic chamber array.

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA ; Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Biomicrofluidics. 2013 Jan 9;7(1):11804. doi: 10.1063/1.4774313. eCollection 2013.

Abstract

This work presents a microfluidic chamber array that generates soluble gradients using sequentially pulsed fluid delivery (SPFD). SPFD produces stable gradients by delivering flow pulses to either side of a chamber. The pulses on each side contain different signal concentrations, and they alternate in sequence, providing the driving force to establish a gradient via diffusion. The device, herein, is significant because it demonstrates the potential to simultaneously meet four important needs that can accelerate and enhance the study of cellular responses to signal gradients. These needs are (i) a scalable chamber array, (ii) low complexity fabrication, (iii) a non-shearing microenvironment, and (iv) gradients with low (near zero) background concentrations. The ability to meet all four needs distinguishes the SPFD device from flow-based and diffusion-based designs, which can only achieve a subset of such needs. Gradients are characterized using fluorescence measurements, which reveal the ability to change the curvature of concentration profiles by simple adjustments to pulsing sequence and flow rate. Preliminary experiments with MDA-MB-231 cancer cells demonstrate cell viability and indicate migrational and morphological responses to a fetal bovine serum gradient. Improved and expanded versions of this technology could form the basis of high-throughput screening tools to study cell migration, development, and cancer.

摘要

这项工作提出了一种使用顺序脉冲流体输送 (SPFD) 生成可溶性梯度的微流控室阵列。SPFD 通过向室的每一侧输送流动脉冲来产生稳定的梯度。每侧的脉冲包含不同的信号浓度,并按顺序交替,通过扩散提供建立梯度的驱动力。该设备具有重要意义,因为它展示了同时满足四个重要需求的潜力,这些需求可以加速和增强细胞对信号梯度响应的研究。这些需求是 (i) 可扩展的腔室阵列,(ii) 低复杂度制造,(iii) 非剪切微环境,以及 (iv) 背景浓度低(接近零)的梯度。满足所有四个需求的能力使 SPFD 设备与基于流动和基于扩散的设计区分开来,后者只能满足此类需求的一部分。梯度使用荧光测量进行表征,这表明通过简单调整脉冲序列和流速可以改变浓度分布的曲率。使用 MDA-MB-231 癌细胞进行的初步实验证明了细胞活力,并表明对胎牛血清梯度的迁移和形态反应。这项技术的改进和扩展版本可以成为高通量筛选工具的基础,用于研究细胞迁移、发育和癌症。

相似文献

1
Sequentially pulsed fluid delivery to establish soluble gradients within a scalable microfluidic chamber array.
Biomicrofluidics. 2013 Jan 9;7(1):11804. doi: 10.1063/1.4774313. eCollection 2013.
3
Generating 2-dimensional concentration gradients of biomolecules using a simple microfluidic design.
Biomicrofluidics. 2017 Aug 2;11(4):044111. doi: 10.1063/1.4991550. eCollection 2017 Jul.
4
Planar microfluidic chamber for generation of stable and steep chemoattractant gradients.
Biophys J. 2008 Aug;95(3):1523-30. doi: 10.1529/biophysj.107.115246.
5
Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices.
Lab Chip. 2010 Jun 21;10(12):1525-35. doi: 10.1039/c001552k. Epub 2010 Apr 13.
6
Microfluidic Systems with Embedded Cell Culture Chambers for High-Throughput Biological Assays.
ACS Appl Bio Mater. 2020 Oct 19;3(10):6661-6671. doi: 10.1021/acsabm.0c00439. Epub 2020 Aug 17.
7
A gradient-generating microfluidic device for cell biology.
J Vis Exp. 2007(7):271. doi: 10.3791/271. Epub 2007 Aug 30.
8
A modular cell culture device for generating arrays of gradients using stacked microfluidic flows.
Biomicrofluidics. 2011 Jun;5(2):22210. doi: 10.1063/1.3576931. Epub 2011 Jun 29.
9
A microfluidic platform for generation of sharp gradients in open-access culture.
Biomicrofluidics. 2010 Nov 2;4(4):44105. doi: 10.1063/1.3490784.
10
Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
Langmuir. 2007 Oct 23;23(22):10910-2. doi: 10.1021/la7026835. Epub 2007 Oct 2.

引用本文的文献

1
A hybrid microfluidic platform for cell-based assays via diffusive and convective trans-membrane perfusion.
Biomicrofluidics. 2013 May 8;7(3):34101. doi: 10.1063/1.4804250. eCollection 2013.
2
Enabling systems biology approaches through microfabricated systems.
Anal Chem. 2013 Oct 1;85(19):8882-94. doi: 10.1021/ac401472y.
3
Preface to special topic: microfluidics in cancer research.
Biomicrofluidics. 2013 Jan;7(1):11701. doi: 10.1063/1.4790815. Epub 2013 Feb 4.

本文引用的文献

2
Concentration landscape generators for shear free dynamic chemical stimulation.
Lab Chip. 2012 Apr 7;12(7):1340-6. doi: 10.1039/c2lc20994b. Epub 2012 Feb 20.
3
A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay.
Lab Chip. 2011 Oct 7;11(19):3305-12. doi: 10.1039/c1lc20123a. Epub 2011 Aug 15.
4
A modular cell culture device for generating arrays of gradients using stacked microfluidic flows.
Biomicrofluidics. 2011 Jun;5(2):22210. doi: 10.1063/1.3576931. Epub 2011 Jun 29.
5
A microfluidic platform for generation of sharp gradients in open-access culture.
Biomicrofluidics. 2010 Nov 2;4(4):44105. doi: 10.1063/1.3490784.
6
A high-throughput microfluidic assay to study neurite response to growth factor gradients.
Lab Chip. 2011 Feb 7;11(3):497-507. doi: 10.1039/c0lc00240b. Epub 2010 Nov 25.
7
Biological applications of microfluidic gradient devices.
Integr Biol (Camb). 2010 Nov;2(11-12):584-603. doi: 10.1039/c0ib00055h. Epub 2010 Oct 19.
8
An arrayed high-content chemotaxis assay for patient diagnosis.
Integr Biol (Camb). 2010 Nov;2(11-12):630-8. doi: 10.1039/c0ib00030b. Epub 2010 Oct 18.
9
Gradient sensing in defined chemotactic fields.
Integr Biol (Camb). 2010 Nov;2(11-12):659-68. doi: 10.1039/c0ib00033g. Epub 2010 Sep 30.
10
Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells.
Integr Biol (Camb). 2010 Nov;2(11-12):680-6. doi: 10.1039/c0ib00041h. Epub 2010 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验