Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Lab Chip. 2010 Jun 21;10(12):1525-35. doi: 10.1039/c001552k. Epub 2010 Apr 13.
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
神经系统的布线依赖于内在和外在信号分子的相互作用,这些信号分子控制着轴突延伸、神经元极性、过程成熟和经验依赖性的细化。外在信号在发育过程中建立和丰富神经元之间的相互作用。了解这些外在线索如何指导神经元在体外建立神经连接,将有助于为研究神经系统网络的发育和功能而开发有组织的神经网络。在体外产生具有特定连接性的有序神经元网络具有特殊的技术挑战,因为结果必须符合重新布线神经网络的生物学要求。在这里,我们展示了形成稳定的、有指导作用的表面结合层粘连蛋白梯度的能力,这种梯度可以指导体外培养的海马神经元发育。我们的工作使用了一个三通道相互连接的微流控装置,该装置通过层流、扩散和物理吸附的组合,可以在平面基底上产生多层的吸附层。通过简单的流体制动变化,可以将各种图案和梯度的层粘连蛋白(LN)和异硫氰酸荧光素标记的多聚赖氨酸(FITC-PLL)沉积到基底上,为神经元提供有指导作用的基底,以引导神经元的发育。我们提出了三种不同的基底设计方案,这些方案在分散的细胞培养中为出生后神经元产生了不同的生长方案。在第一种方法中,通过扩散介导在盖玻片上形成 LN 的梯度,引导神经元向 LN 浓度增加的方向生长。在第二种方法中,通过抽吸驱动的层流产生 LN 和 FITC-PLL 的组合梯度,将神经元的生长限制在两个重叠梯度中心的 15 微米宽的生长区内。最后一种方法证明了结合 FITC-PLL 的二进制线与 LN 和牛血清白蛋白(BSA)表面梯度相结合的能力,以产生提供对生长的额外控制水平的基底吸附层。这项工作展示了使用简单的基于微流控的基底沉积程序对表面结合梯度进行时空流体控制的优势。我们预计,这种基于微流控的图案化方法将提供有指导作用的图案和表面结合梯度,为指导神经元发育和网络形成提供新的控制水平。