Suppr超能文献

使用微通道中颗粒的空间控制自组装来产生多种化学物质的浓度梯度。

Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels.

机构信息

Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea.

出版信息

Lab Chip. 2012 Oct 21;12(20):3968-75. doi: 10.1039/c2lc40450h.

Abstract

We present a robust microfluidic platform for the stable generation of multiple chemical gradients simultaneously using in situ self-assembly of particles in microchannels. This proposed device enables us to generate stable and reproducible diffusion-based gradients rapidly without convection flow: gradients are stabilized within 5 min and are maintained steady for several hours. Using this device, we demonstrate the dynamic position control of bacteria by introducing the sequential directional change of chemical gradients. Green Fluorescent Protein (GFP)-expressing bacterial cells, allowing quantitative monitoring, show not only tracking motion according to the directional control of chemical gradients, but also the gradual loss of sensitivity when exposed to the sequential attractants because of receptor saturation. In addition, the proposed system can be used to study the preferential chemotaxis assay of bacteria toward multiple chemical sources, since it is possible to produce multiple chemical gradients in the main chamber; aspartate induces the most preferential chemotaxis over galactose and ribose. The microfluidic device can be easily fabricated with a simple and cost effective process based on capillary pressure and evaporation for particle assembly. The assembled particles create uniform porous membranes in microchannels and its porosity can be easily controlled with different size particles. Moreover, the membrane is biocompatible and more robust than hydrogel-based porous membranes. The proposed system is expected to be a useful tool for the characterization of bacterial responses to various chemical sources, screening of bacterial cells, synthetic biology and understanding many cellular activities.

摘要

我们提出了一种稳健的微流控平台,用于使用微通道中颗粒的原位自组装同时稳定地产生多种化学梯度。该设备使我们能够快速生成稳定且可重复的基于扩散的梯度,而无需对流:梯度在 5 分钟内稳定,并在数小时内保持稳定。使用该设备,我们通过引入化学梯度的顺序定向变化来演示细菌的动态位置控制。表达绿色荧光蛋白(GFP)的细菌细胞,允许进行定量监测,不仅根据化学梯度的定向控制进行跟踪运动,而且由于受体饱和,在暴露于顺序激动剂时逐渐丧失敏感性。此外,由于可以在主腔中产生多种化学梯度,因此所提出的系统可用于研究细菌对多种化学源的优先趋化性测定;天冬氨酸比半乳糖和核糖更能诱导最优先的趋化性。该微流控装置可以使用基于毛细压力和蒸发的简单且具有成本效益的工艺轻松制造,用于颗粒组装。组装后的颗粒在微通道中形成均匀的多孔膜,并且可以通过不同大小的颗粒轻松控制其孔隙率。此外,该膜具有生物相容性,并且比基于水凝胶的多孔膜更坚固。该系统有望成为研究细菌对各种化学源的反应,细菌细胞的筛选,合成生物学以及理解许多细胞活动的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验