Suppr超能文献

采用与微针阵列集成的光流控装置对生物分子进行电动捕获和表面增强拉曼散射检测。

Electrokinetic trapping and surface enhanced Raman scattering detection of biomolecules using optofluidic device integrated with a microneedles array.

机构信息

Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan.

Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan ; Center for Micro/Nano Science and Technology, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan ; Research Center for Energy Technology and Strategy, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan.

出版信息

Biomicrofluidics. 2013 Feb 21;7(1):14111. doi: 10.1063/1.4793224. eCollection 2013.

Abstract

In this study, microneedles which possess sharp tips were utilized to trap and detect the biomolecules. Owing to the large curvature, the tips of the microneedles created a substantially high gradient of electric field under the non-uniform electric field which served as not only the trapping sites but also the substrate for surface enhanced Raman scattering (SERS). Separation of polystyrene microparticles with different sizes and two kinds of biomolecules (Staphylococcus aureus (S. aureus) and the red blood cells (RBCs)) were demonstrated. Moreover, in situ detection of S. aureus was performed immediately after separation was completed. The results showed that, after 15 s of sample collection, the Raman signals of S. aureus were detected and greatly enhanced through SERS effect.

摘要

在这项研究中,使用了具有锋利尖端的微针来捕获和检测生物分子。由于曲率较大,微针的尖端在非均匀电场下产生了相当高的电场梯度,不仅作为捕获位点,而且还作为表面增强拉曼散射(SERS)的基底。展示了不同大小的聚苯乙烯微球和两种生物分子(金黄色葡萄球菌(金黄色葡萄球菌)和红细胞(RBC))的分离。此外,在分离完成后立即进行了金黄色葡萄球菌的原位检测。结果表明,在收集样品 15 秒后,通过 SERS 效应检测到并大大增强了金黄色葡萄球菌的拉曼信号。

相似文献

3
Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition.
ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20919-29. doi: 10.1021/acsami.5b06446. Epub 2015 Sep 9.
5
Electrokinetic Preseparation and Molecularly Imprinted Trapping for Highly Selective SERS Detection of Charged Phthalate Plasticizers.
Anal Chem. 2021 Jan 19;93(2):946-955. doi: 10.1021/acs.analchem.0c03652. Epub 2020 Nov 18.
9
Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration.
Lab Chip. 2009 Dec 7;9(23):3360-3. doi: 10.1039/b912076a. Epub 2009 Oct 1.
10
Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries.
ACS Nano. 2012 Jan 24;6(1):381-8. doi: 10.1021/nn203733t. Epub 2011 Dec 23.

引用本文的文献

1
Review: Microbial analysis in dielectrophoretic microfluidic systems.
Anal Chim Acta. 2017 May 8;966:11-33. doi: 10.1016/j.aca.2017.02.024. Epub 2017 Mar 6.
2
Increasing local density and purity of molecules/bacteria on a sensing surface from diluted blood using 3D hybrid electrokinetics.
Biomicrofluidics. 2016 Jun 8;10(3):034116. doi: 10.1063/1.4953447. eCollection 2016 May.
3
Optofluidic devices with integrated solid-state nanopores.
Mikrochim Acta. 2016 Apr;183(4):1275-1287. doi: 10.1007/s00604-016-1758-y. Epub 2016 Jan 27.
4
Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.
Sensors (Basel). 2015 Aug 4;15(8):19021-46. doi: 10.3390/s150819021.
5
Electric-Field Enhanced Molecule Detection in Suspension on Assembled Plasmonic Arrays by Raman Spectroscopy.
J Nanotechnol Eng Med. 2014 Nov;5(4):0410051-410056. doi: 10.1115/1.4030769.
6
Numerical simulation on the opto-electro-kinetic patterning for rapid concentration of particles in a microchannel.
Biomicrofluidics. 2015 May 13;9(3):034102. doi: 10.1063/1.4921232. eCollection 2015 May.
7
Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
Biomicrofluidics. 2014 Oct 24;8(5):054123. doi: 10.1063/1.4900523. eCollection 2014 Sep.

本文引用的文献

1
Optofluidics incorporating actively controlled micro- and nano-particles.
Biomicrofluidics. 2012 Jul 18;6(3):31501. doi: 10.1063/1.4736796. Print 2012 Sep.
3
Dielectrophoresis in microfluidics technology.
Electrophoresis. 2011 Sep;32(18):2410-27. doi: 10.1002/elps.201100167. Epub 2011 Aug 26.
5
Dielectrophoretic separation of mouse melanoma clones.
Biomicrofluidics. 2010 Jun 16;4(2):021101. doi: 10.1063/1.3447702.
6
Dynamic double layer effects on ac-induced dipoles of dielectric nanocolloids.
Biomicrofluidics. 2010 Jun 29;4(2):022801. doi: 10.1063/1.3455720.
7
Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration.
Lab Chip. 2009 Dec 7;9(23):3360-3. doi: 10.1039/b912076a. Epub 2009 Oct 1.
8
Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells.
Lab Chip. 2009 Feb 7;9(3):433-9. doi: 10.1039/b809702j. Epub 2008 Nov 12.
9
Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.
Anal Chim Acta. 2007 May 8;590(2):139-44. doi: 10.1016/j.aca.2007.03.049. Epub 2007 Mar 28.
10
Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel.
Anal Bioanal Chem. 2007 Apr;387(8):2609-15. doi: 10.1007/s00216-007-1158-6. Epub 2007 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验