Liu Shuo, Hawkins Aaron R, Schmidt Holger
School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602, USA.
Mikrochim Acta. 2016 Apr;183(4):1275-1287. doi: 10.1007/s00604-016-1758-y. Epub 2016 Jan 27.
This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook.
本综述(含90篇参考文献)涵盖了用于检测和传感的集成固态纳米孔的光流控器件的最新技术水平。在介绍光流控和固态纳米孔技术的原理之后,我们讨论了使用光流控的基于固态纳米孔的检测方法的特点。这包括将固态纳米孔整合到基于液芯反谐振反射光波导(ARROWs)的光流控平台中、其制造方法、单粒子检测和粒子操纵方面。然后,我们描述了集成到光流控芯片中的固态纳米孔所提供的新功能,特别是作为用于相关电光检测和区分纳米粒子的智能门。这使得能够识别病毒和λ-DNA、进行粒子轨迹模拟、通过调整纳米孔的形状提高灵敏度。综述最后进行了总结并展望了未来。