Suppr超能文献

一种用于从全血微滴中实时分离血细胞的毛细管介电泳芯片。

A capillary dielectrophoretic chip for real-time blood cell separation from a drop of whole blood.

机构信息

Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.

DELBio Inc., Taiwan.

出版信息

Biomicrofluidics. 2013 Apr 18;7(2):24110. doi: 10.1063/1.4802269. eCollection 2013.

Abstract

This study proposes a capillary dielectrophoretic chip to separate blood cells from a drop of whole blood (approximately 1 μl) sample using negative dielectrophoretic force. The separating efficiency was evaluated by analyzing the image before and after dielectrophoretic force manipulation. Blood samples with various hematocrits (10%-60%) were tested with varied separating voltages and chip designs. In this study, a chip with 50 μm gap design achieved a separation efficiency of approximately 90% within 30 s when the hematocrit was in the range of 10%-50%. Furthermore, glucose concentration was electrochemically measured by separating electrodes following manipulation. The current response increased significantly (8.8-fold) after blood cell separation, which was attributed not only to the blood cell separation but also to sample disturbance by the dielectrophoretic force.

摘要

本研究提出了一种基于毛细管介电泳的芯片,利用负介电泳力从约 1μl 的全血样本中分离血细胞。通过分析介电泳力作用前后的图像来评估分离效率。使用不同的分离电压和芯片设计对不同血细胞比容(10%-60%)的血液样本进行了测试。在这项研究中,当血细胞比容在 10%-50%范围内时,具有 50μm 间隙设计的芯片在 30s 内实现了约 90%的分离效率。此外,通过分离电极进行电化学测量来检测葡萄糖浓度。血细胞分离后电流响应显著增加(8.8 倍),这不仅归因于血细胞分离,还归因于介电泳力对样本的干扰。

相似文献

1
A capillary dielectrophoretic chip for real-time blood cell separation from a drop of whole blood.
Biomicrofluidics. 2013 Apr 18;7(2):24110. doi: 10.1063/1.4802269. eCollection 2013.
2
Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
Bioprocess Biosyst Eng. 2020 Sep;43(9):1573-1586. doi: 10.1007/s00449-020-02349-x. Epub 2020 Apr 23.
5
Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic.
RSC Adv. 2020 Sep 11;10(56):33731-33738. doi: 10.1039/d0ra06271e. eCollection 2020 Sep 10.
6
Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
Electrophoresis. 2019 Mar;40(6):969-978. doi: 10.1002/elps.201800302. Epub 2018 Sep 30.
7
AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes.
Biomicrofluidics. 2012 Mar;6(1):12807-128079. doi: 10.1063/1.3682049. Epub 2012 Mar 15.
8
On-chip dielectrophoretic device for cancer cell manipulation: A numerical and artificial neural network study.
Biomicrofluidics. 2023 Mar 6;17(2):024102. doi: 10.1063/5.0131806. eCollection 2023 Mar.
9
Study on the discrete dielectrophoresis for particle-cell separation.
Electrophoresis. 2020 Jun;41(10-11):991-1001. doi: 10.1002/elps.201900473. Epub 2020 Feb 28.
10
Dielectrophoretic capture of and boar sperms using ULSI-fabricated three-dimensional protruding TiN nano-electrode arrays.
Front Bioeng Biotechnol. 2024 Oct 1;12:1470606. doi: 10.3389/fbioe.2024.1470606. eCollection 2024.

引用本文的文献

4
Dielectrophoretic separation of blood cells.
Biomed Microdevices. 2022 Aug 25;24(3):30. doi: 10.1007/s10544-022-00623-1.
5
A Microfluidic PET-Based Electrochemical Glucose Sensor.
Micromachines (Basel). 2022 Mar 30;13(4):552. doi: 10.3390/mi13040552.
6
Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms.
Bioengineering (Basel). 2021 Jul 3;8(7):94. doi: 10.3390/bioengineering8070094.
7
Dielectrophoresis Separation of Platelets Using a Novel Zigzag Microchannel.
Micromachines (Basel). 2020 Sep 25;11(10):890. doi: 10.3390/mi11100890.
8
High-Efficiency Plasma Separator Based on Immunocapture and Filtration.
Micromachines (Basel). 2020 Mar 28;11(4):352. doi: 10.3390/mi11040352.
9
Blood Particle Separation Using Dielectrophoresis in A Novel Microchannel: A Numerical Study.
Cell J. 2020 Jul;22(2):218-226. doi: 10.22074/cellj.2020.6386. Epub 2019 Oct 14.
10
Micro-Particle Operations Using Asymmetric Traps.
Sci Rep. 2019 Feb 4;9(1):1278. doi: 10.1038/s41598-018-37454-1.

本文引用的文献

1
Microfluidic Apps for off-the-shelf instruments.
Lab Chip. 2012 Jul 21;12(14):2464-8. doi: 10.1039/c2lc00043a. Epub 2012 May 3.
2
Commercialization of microfluidic point-of-care diagnostic devices.
Lab Chip. 2012 Jun 21;12(12):2118-34. doi: 10.1039/c2lc21204h. Epub 2012 Feb 17.
3
Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip.
Lab Chip. 2012 Mar 21;12(6):1135-42. doi: 10.1039/c2lc21116e. Epub 2012 Feb 8.
4
An on-chip whole blood/plasma separator using hetero-packed beads at the inlet of a microchannel.
Lab Chip. 2012 Mar 7;12(5):863-6. doi: 10.1039/c2lc21009f. Epub 2012 Jan 25.
5
Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
Lab Chip. 2012 Jan 21;12(2):274-80. doi: 10.1039/c1lc20803a. Epub 2011 Nov 17.
6
Lateral dielectrophoretic microseparators to measure the size distribution of blood cells.
Lab Chip. 2011 Nov 21;11(22):3864-72. doi: 10.1039/c1lc20413k. Epub 2011 Sep 30.
7
8
Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery.
Lab Chip. 2011 Sep 7;11(17):2858-68. doi: 10.1039/c1lc20080a. Epub 2011 Jul 12.
9
Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis.
Electrophoresis. 2011 Jun;32(11):1327-36. doi: 10.1002/elps.201000625. Epub 2011 Apr 18.
10
Hybrid electrokinetic manipulation in high-conductivity media.
Lab Chip. 2011 May 21;11(10):1770-5. doi: 10.1039/c1lc20054b. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验