Suppr超能文献

微流控平台中自驱动流动过程中的血浆自分离技术。

Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms.

作者信息

Wang Yudong, Nunna Bharath Babu, Talukder Niladri, Etienne Ernst Emmanuel, Lee Eon Soo

机构信息

Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA.

出版信息

Bioengineering (Basel). 2021 Jul 3;8(7):94. doi: 10.3390/bioengineering8070094.

Abstract

Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical analysis due to it contains various biomarkers. The majority of the blood plasma separation is still handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip (LOC) field, an effective microfluidic blood plasma separation platform attracts researchers' attention globally. Blood plasma self-separation technologies are usually divided into two categories: active self-separation and passive self-separation. Passive self-separation technologies, in contrast with active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrodynamic forces. Passive self-separation devices are driven by the capillary flow, which is generated due to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to the active plasma separation techniques, passive plasma separation methods are more considered in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We propose an extensive review of mechanisms of passive self-separation technologies and enumerate some experimental details and devices to exploit these effects. The performances, limitations and challenges of these technologies and devices are also compared and discussed.

摘要

由于血浆含有各种生物标志物,因此它是疾病诊断和生物医学分析中最常用的生物流体。大多数血浆分离仍通过离心进行,这是一种芯片外且耗时的方法。因此,在芯片实验室(LOC)领域,一个有效的微流控血浆分离平台吸引了全球研究人员的关注。血浆自分离技术通常分为两类:主动自分离和被动自分离。与主动自分离相比,被动自分离技术仅依赖于微通道几何形状、微流体现象和流体动力。被动自分离装置由毛细管流驱动,毛细管流是由于通道表面的特性及其与流体的相互作用而产生的。与主动血浆分离技术相比,被动血浆分离方法因其易于制造、便携、用户友好等特点而在微流控平台中更受关注。我们对被动自分离技术的机制进行了广泛综述,并列举了一些利用这些效应的实验细节和装置。还对这些技术和装置的性能、局限性和挑战进行了比较和讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c05/8301051/dcf3baa8674c/bioengineering-08-00094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验