Suppr超能文献

垂直 SU-8 微管的开发与可溶解尖端集成,用于经皮药物输送。

Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery.

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore ; Department of Pharmacy, National University of Singapore, 3 Science Drive 24, Singapore 117543, Singapore.

Department of Electrical and Computer Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.

出版信息

Biomicrofluidics. 2013 Mar 26;7(2):26502. doi: 10.1063/1.4798471. eCollection 2013.

Abstract

Polymer-based microneedles have drawn much attention in the transdermal drug delivery resulting from their flexibility and biocompatibility. Traditional fabrication approach deploys various kinds of molds to create sharp tips at the end of needles for the penetration purpose. This approach is usually time-consuming and expensive. In this study, we developed an innovative fabrication process to make biocompatible SU-8 microtubes integrated with biodissolvable maltose tips as novel microneedles for the transdermal drug delivery applications. These microneedles can easily penetrate the skin's outer barrier represented by the stratum corneum (SC) layer. The drug delivery device of mironeedles array with 1000 μm spacing between adjacent microneedles is proven to be able to penetrate porcine cadaver skins successfully. The maximum loading force on the individual microneedle can be as large as 7.36 ± 0.48N. After 9 min of the penetration, all the maltose tips are dissolved in the tissue. Drugs can be further delivered via these open biocompatible SU-8 microtubes in a continuous flow manner. The permeation patterns caused by the solution containing Rhodamine 110 at different depths from skin surface were characterized via a confocal microscope. It shows successful implementation of the microneedle function for fabricated devices.

摘要

基于聚合物的微针因其灵活性和生物相容性而在经皮药物输送中引起了广泛关注。传统的制造方法采用各种模具在针的末端创建锋利的尖端以实现穿透。这种方法通常既耗时又昂贵。在这项研究中,我们开发了一种创新的制造工艺,制造出与可生物降解的麦芽糖尖端集成的生物相容性 SU-8 微管,作为用于经皮药物输送应用的新型微针。这些微针可以轻松穿透皮肤的外层屏障,即角质层 (SC) 层。证明具有 1000 μm 相邻微针间距的微针阵列药物输送装置能够成功穿透猪尸体皮肤。单个微针上的最大加载力可高达 7.36 ± 0.48N。在穿透 9 分钟后,所有麦芽糖尖端都在组织中溶解。药物可以通过这些开放的生物相容性 SU-8 微管以连续流动的方式进一步输送。通过共聚焦显微镜对从皮肤表面不同深度的含有 Rhodamine 110 的溶液引起的渗透模式进行了表征。这表明制造的设备成功实现了微针的功能。

相似文献

1
Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery.
Biomicrofluidics. 2013 Mar 26;7(2):26502. doi: 10.1063/1.4798471. eCollection 2013.
2
Development of vertical SU-8 microneedles for transdermal drug delivery by double drawing lithography technology.
Biomicrofluidics. 2013 Dec 6;7(6):66501. doi: 10.1063/1.4843475. eCollection 2013.
5
Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery.
J Control Release. 2005 May 5;104(1):51-66. doi: 10.1016/j.jconrel.2005.02.002. Epub 2005 Apr 1.
6
Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2654-7. doi: 10.1109/IEMBS.2004.1403761.
7
A simple method of microneedle array fabrication for transdermal drug delivery.
Drug Dev Ind Pharm. 2013 Feb;39(2):299-309. doi: 10.3109/03639045.2012.679361. Epub 2012 Apr 23.
8
Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration.
Eur J Pharm Biopharm. 2014 Feb;86(2):200-11. doi: 10.1016/j.ejpb.2013.04.023. Epub 2013 May 29.
9
Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin.
Eur J Pharm Biopharm. 2018 Aug;129:88-103. doi: 10.1016/j.ejpb.2018.05.017. Epub 2018 May 22.
10
Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery.
Acta Biomater. 2018 Oct 15;80:401-411. doi: 10.1016/j.actbio.2018.09.007. Epub 2018 Sep 8.

引用本文的文献

1
Microneedle-Based Glucose Sensor Platform: From to Wearable Point-of-Care Testing Systems.
Biosensors (Basel). 2022 Aug 6;12(8):606. doi: 10.3390/bios12080606.
2
Microarray patches enable the development of skin-targeted vaccines against COVID-19.
Adv Drug Deliv Rev. 2021 Apr;171:164-186. doi: 10.1016/j.addr.2021.01.022. Epub 2021 Feb 2.
3
Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases.
Expert Opin Drug Deliv. 2021 Feb;18(2):151-167. doi: 10.1080/17425247.2021.1823964. Epub 2020 Oct 6.
4
A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses.
Microsyst Nanoeng. 2016 May 23;2:16012. doi: 10.1038/micronano.2016.12. eCollection 2016.
5
Dissolving Microneedle Patches for Dermal Vaccination.
Pharm Res. 2017 Nov;34(11):2223-2240. doi: 10.1007/s11095-017-2223-2. Epub 2017 Jul 17.
6
Toward Self-Powered Wearable Adhesive Skin Patch with Bendable Microneedle Array for Transdermal Drug Delivery.
Adv Sci (Weinh). 2016 Apr 19;3(9):1500441. doi: 10.1002/advs.201500441. eCollection 2016 Sep.
7
Polymer-based disposable microneedle array with insertion assisted by vibrating motion.
Biomicrofluidics. 2016 Jan 19;10(1):011905. doi: 10.1063/1.4939948. eCollection 2016 Jan.
8
A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve.
Biomicrofluidics. 2015 Jul 22;9(5):052608. doi: 10.1063/1.4927436. eCollection 2015 Sep.
9
Development of vertical SU-8 microneedles for transdermal drug delivery by double drawing lithography technology.
Biomicrofluidics. 2013 Dec 6;7(6):66501. doi: 10.1063/1.4843475. eCollection 2013.

本文引用的文献

2
Drawing lithography for microneedles: a review of fundamentals and biomedical applications.
Biomaterials. 2012 Oct;33(30):7309-26. doi: 10.1016/j.biomaterials.2012.06.065. Epub 2012 Jul 24.
3
Vaccination of bovines against Echinococcus granulosus (cystic echinococcosis).
Vaccine. 2012 Apr 26;30(20):3076-81. doi: 10.1016/j.vaccine.2012.02.073. Epub 2012 Mar 8.
4
Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens.
J Pharm Sci. 2012 Mar;101(3):1021-7. doi: 10.1002/jps.23019. Epub 2011 Dec 20.
5
Microneedles: an emerging transdermal drug delivery system.
J Pharm Pharmacol. 2012 Jan;64(1):11-29. doi: 10.1111/j.2042-7158.2011.01369.x. Epub 2011 Nov 4.
6
Simultaneous basal-bolus delivery of fast-acting insulin and its significance in diabetes management.
Nanomedicine. 2012 Feb;8(2):221-7. doi: 10.1016/j.nano.2011.05.017. Epub 2011 Jun 15.
7
Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose.
Biomaterials. 2011 Apr;32(11):3134-40. doi: 10.1016/j.biomaterials.2011.01.014. Epub 2011 Feb 2.
9
Review of patents on microneedle applicators.
Recent Pat Drug Deliv Formul. 2011 Jan;5(1):11-23. doi: 10.2174/187221111794109484.
10
Metal microneedle fabrication using twisted light with spin.
Opt Express. 2010 Aug 16;18(17):17967-73. doi: 10.1364/OE.18.017967.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验