Suppr超能文献

循环但不固定的 N-去糖基化血管性血友病因子在流动条件下增加血小板黏附。

Circulating but not immobilized N-deglycosylated von Willebrand factor increases platelet adhesion under flow conditions.

机构信息

University of Augsburg, Chair of Experimental Physics I, 86159 Augsburg, Germany ; Department of Biophysical Chemistry, University of Konstanz, 78457 Konstanz, Germany.

Heidelberg University, Medical Faculty Mannheim, Experimental Dermatology, 68167 Mannheim, Germany.

出版信息

Biomicrofluidics. 2013 Aug 26;7(4):44124. doi: 10.1063/1.4819746. eCollection 2013.

Abstract

The role of von Willebrand factor (VWF) as a shear stress activated platelet adhesive has been related to a coiled-elongated shape conformation. The forces dominating this transition have been suggested to be controlled by the proteins polymeric architecture. However, the fact that 20% of VWF molecular weight originates from glycan moieties has so far been neglected in these calculations. In this study, we present a systematic experimental investigation on the role of N-glycosylation for VWF mediated platelet adhesion under flow. A microfluidic flow chamber with a stenotic compartment that allows one to mimic various physiological flow conditions was designed for the efficient analysis of the adhesion spectrum. Surprisingly, we found an increase in platelet adhesion with elevated shear rate, both qualitatively and quantitatively fully conserved when N-deglycosylated VWF (N-deg-VWF) instead of VWF was immobilized in the microfluidic channel. This has been demonstrated consistently over four orders of magnitude in shear rate. In contrast, when N-deg-VWF was added to the supernatant, an increase in adhesion rate by a factor of two was detected compared to the addition of wild-type VWF. It appears that once immobilized, the role of glycans is at least modified if not-as found here for the case of adhesion-negated. These findings strengthen the physical impact of the circulating polymer on shear dependent platelet adhesion events. At present, there is no theoretical explanation for an increase in platelet adhesion to VWF in the absence of its N-glycans. However, our data indicate that the effective solubility of the protein and hence its shape or conformation may be altered by the degree of glycosylation and is therefore a good candidate for modifying the forces required to uncoil this biopolymer.

摘要

作为一种剪切应力激活的血小板黏附物,血管性血友病因子 (VWF) 的作用与卷曲-延伸形状构象有关。据推测,控制这种转变的力受蛋白质聚合结构的控制。然而,到目前为止,VWF 分子量的 20% 来自糖基部分,这一事实在这些计算中被忽略了。在这项研究中,我们对 N-糖基化在流动条件下 VWF 介导的血小板黏附中的作用进行了系统的实验研究。设计了一种带有狭窄腔的微流控流动室,可模拟各种生理流动条件,用于高效分析黏附谱。令人惊讶的是,我们发现随着剪切率的升高,血小板黏附增加,无论是定性还是定量,当 N-去糖基化 VWF(N-deg-VWF)而不是 VWF 固定在微流控通道中时,完全保留了这种情况。在剪切率的四个数量级范围内都得到了一致的证明。相比之下,当 N-deg-VWF 被添加到上清液中时,与添加野生型 VWF 相比,黏附速率增加了两倍。似乎一旦固定,糖基的作用至少会改变,如果不是像这里的黏附情况那样被否定。这些发现增强了循环聚合物对剪切依赖性血小板黏附事件的物理影响。目前,对于缺乏 N-糖基的 VWF 而言,血小板黏附增加的理论解释还没有。然而,我们的数据表明,糖基化的程度可能会改变蛋白质的有效溶解度,从而改变其形状或构象,因此它是改变解开这种生物聚合物所需力的良好候选物。

相似文献

1
Circulating but not immobilized N-deglycosylated von Willebrand factor increases platelet adhesion under flow conditions.
Biomicrofluidics. 2013 Aug 26;7(4):44124. doi: 10.1063/1.4819746. eCollection 2013.
4
Fibrinogen and von Willebrand factor mediated platelet adhesion to polystyrene under flow conditions.
J Biomater Sci Polym Ed. 2008;19(10):1383-410. doi: 10.1163/156856208786052353.
6
Functional characterization of tissue factor in von Willebrand factor-dependent thrombus formation under whole blood flow conditions.
Int J Hematol. 2016 Dec;104(6):661-668. doi: 10.1007/s12185-016-2086-z. Epub 2016 Aug 25.
10
High shear dependent von Willebrand factor self-assembly fostered by platelet interaction and controlled by ADAMTS13.
Thromb Res. 2014 Jun;133(6):1079-87. doi: 10.1016/j.thromres.2014.03.024. Epub 2014 Mar 10.

引用本文的文献

2
Deciphering the Roles of N-Glycans on Collagen-Platelet Interactions.
J Proteome Res. 2019 Jun 7;18(6):2467-2477. doi: 10.1021/acs.jproteome.9b00003. Epub 2019 May 15.
3
Effects of upstream shear forces on priming of platelets for downstream adhesion and activation.
Acta Biomater. 2018 Jun;73:228-235. doi: 10.1016/j.actbio.2018.04.002. Epub 2018 Apr 11.
4
An Insight into Glyco-Microheterogeneity of Plasma von Willebrand Factor by Mass Spectrometry.
J Proteome Res. 2017 Sep 1;16(9):3348-3362. doi: 10.1021/acs.jproteome.7b00359. Epub 2017 Jul 27.
5
Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions.
Biophys J. 2015 May 5;108(9):2312-21. doi: 10.1016/j.bpj.2015.03.041.
7
Migration distance-based platelet function analysis in a microfluidic system.
Biomicrofluidics. 2013 Nov 4;7(6):64101. doi: 10.1063/1.4829095. eCollection 2013.

本文引用的文献

1
Hydrodynamic mechanisms of cell and particle trapping in microfluidics.
Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.
2
Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation.
Biomicrofluidics. 2011 Sep;5(3):34122-341228. doi: 10.1063/1.3640045. Epub 2011 Sep 21.
3
Local elongation of endothelial cell-anchored von Willebrand factor strings precedes ADAMTS13 protein-mediated proteolysis.
J Biol Chem. 2011 Oct 21;286(42):36361-7. doi: 10.1074/jbc.M111.271890. Epub 2011 Sep 6.
4
Effect of hemodynamic forces on platelet aggregation geometry.
Ann Biomed Eng. 2011 May;39(5):1403-13. doi: 10.1007/s10439-010-0239-4. Epub 2011 Jan 4.
5
Plasma levels of von Willebrand factor in the etiologic subtypes of ischemic stroke.
J Thromb Haemost. 2011 Feb;9(2):275-81. doi: 10.1111/j.1538-7836.2010.04134.x.
6
Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow.
Ann Biomed Eng. 2011 Feb;39(2):922-9. doi: 10.1007/s10439-010-0182-4. Epub 2010 Oct 15.
7
Shear-induced interaction of platelets with von Willebrand factor results in glycoprotein Ibalpha shedding.
Am J Physiol Heart Circ Physiol. 2009 Dec;297(6):H2128-35. doi: 10.1152/ajpheart.00107.2009. Epub 2009 Oct 9.
8
Fluid shear induces conformation change in human blood protein von Willebrand factor in solution.
Biophys J. 2009 Mar 18;96(6):2313-20. doi: 10.1016/j.bpj.2008.12.3900.
9
Low coronary flow velocity and shear stress predict restenosis after sirolimus-eluting stent implantation.
Scand Cardiovasc J. 2009;43(5):298-303. doi: 10.1080/14017430902785493.
10
Effect of glycosylation on protein folding: a close look at thermodynamic stabilization.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8256-61. doi: 10.1073/pnas.0801340105. Epub 2008 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验