Armstrong C M, Chow R H
Biophys J. 1987 Jul;52(1):133-6. doi: 10.1016/S0006-3495(87)83198-3.
Patch-clamp performance can be improved without altering the normal headstage configuration described by (Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, 1981, Pfluegers Arch. Eur. J. Physiol., 391:85-100). The "supercharging" method permits resolution of such fast events as calcium and sodium tail currents. Digital computer modeling and analog electronic simulation were used to identify appropriate shapes for the command voltage and the voltage applied to a capacitor tied to the input of the headstage. The voltage command pulse consists of a step with a brief (5-15 microseconds) rectangular spike on its leading edge. Spike amplitude is a function of the membrane capacitance and the access resistance. The spike drives current through the access resistance and speeds charging of the membrane capacitance, making it possible to complete a voltage step within 5-15 microseconds. Clamping speed is independent of the electrode and feedback resistance over a wide range. The second function of the patch clamp amplifier is current measurement, and good time resolution requires suppression of the capacity transient. This can be accomplished by applying an appropriately shaped voltage to the small capacitor tied to the input of the headstage. Series resistance compensation for ionic current transients does not interfere with supercharging. Although the focus of this paper is on whole cell recording, the supercharging concept may prove useful for single channel and bilayer recording techniques.
在不改变由(Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, 1981, Pfluegers Arch. Eur. J. Physiol., 391:85-100)所描述的正常前置放大器配置的情况下,可以提高膜片钳的性能。“增压”方法能够分辨诸如钙和钠尾电流等快速事件。利用数字计算机建模和模拟电子仿真来确定指令电压以及施加到与前置放大器输入端相连的电容器上的电压的合适波形。指令电压脉冲由一个阶跃和其前沿上的一个短暂(5 - 15微秒)的矩形尖峰组成。尖峰幅度是膜电容和接入电阻的函数。该尖峰驱动电流通过接入电阻并加速膜电容的充电,使得能够在5 - 15微秒内完成一个电压阶跃。在很宽的范围内,钳制速度与电极和反馈电阻无关。膜片钳放大器的第二个功能是电流测量,而良好的时间分辨率需要抑制电容瞬变。这可以通过向与前置放大器输入端相连的小电容器施加一个形状合适的电压来实现。对离子电流瞬变进行串联电阻补偿不会干扰增压。尽管本文重点在于全细胞记录,但增压概念可能对单通道和双层记录技术也有用。