Suppr超能文献

利用计算建模解决电压钳实验中的伪迹:在快速钠电流记录中的应用

Resolving artefacts in voltage-clamp experiments with computational modelling: an application to fast sodium current recordings.

作者信息

Lei Chon Lok, Clark Alexander P, Clerx Michael, Wei Siyu, Bloothooft Meye, de Boer Teun P, Christini David J, Krogh-Madsen Trine, Mirams Gary R

机构信息

Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.

Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.

出版信息

bioRxiv. 2024 Jul 24:2024.07.23.604780. doi: 10.1101/2024.07.23.604780.

Abstract

Cellular electrophysiology is the foundation of many fields, from basic science in neurology, cardiology, oncology to safety critical applications for drug safety testing, clinical phenotyping, etc. Patch-clamp voltage clamp is the gold standard technique for studying cellular electrophysiology. Yet, the quality of these experiments is not always transparent, which may lead to erroneous conclusions for studies and applications. Here, we have developed a new computational approach that allows us to explain and predict the experimental artefacts in voltage-clamp experiments. The computational model captures the experimental procedure and its inadequacies, including: voltage offset, series resistance, membrane capacitance and (imperfect) amplifier compensations, such as series resistance compensation and supercharging. The computational model was validated through a series of electrical model cell experiments. Using this computational approach, the artefacts in voltage-clamp experiments of cardiac fast sodium current, one of the most challenging currents to voltage clamp, were able to be resolved and explained through coupling the observed current and the simulated membrane voltage, including some typically observed shifts and delays in the recorded currents. We further demonstrated that the typical way of averaging data for current-voltage relationships would lead to biases in the peak current and shifts in the peak voltage, and such biases can be in the same order of magnitude as those differences reported for disease-causing mutations. Therefore, the presented new computational pipeline will provide a new standard of assessing the voltage-clamp experiments and interpreting the experimental data, which may be able to rectify and provide a better understanding of ion channel mutations and other related applications.

摘要

细胞电生理学是许多领域的基础,从神经学、心脏病学、肿瘤学的基础科学到药物安全性测试、临床表型分析等安全关键应用。膜片钳电压钳是研究细胞电生理学的金标准技术。然而,这些实验的质量并不总是透明的,这可能导致研究和应用得出错误的结论。在这里,我们开发了一种新的计算方法,使我们能够解释和预测电压钳实验中的实验伪迹。该计算模型捕捉了实验过程及其不足之处,包括:电压偏移、串联电阻、膜电容以及(不完美的)放大器补偿,如串联电阻补偿和过充电。通过一系列电模型细胞实验对该计算模型进行了验证。使用这种计算方法,通过将观察到的电流与模拟的膜电压耦合,能够解析和解释心脏快速钠电流电压钳实验中的伪迹,心脏快速钠电流是电压钳实验中最具挑战性的电流之一,包括记录电流中一些典型观察到的偏移和延迟。我们进一步证明,用于电流 - 电压关系的数据平均的典型方法会导致峰值电流出现偏差和峰值电压发生偏移,并且这种偏差的量级可能与报道的致病突变差异相同。因此,所提出的新计算流程将为评估电压钳实验和解释实验数据提供新的标准,这可能能够纠正并更好地理解离子通道突变及其他相关应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be0/11291073/1f6c2267e041/nihpp-2024.07.23.604780v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验